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Summary
We address two research applications in this methodological review: starting from an audio 
recording, the goal may be to characterize nonlinear phenomena (NLP) at the level of voice 
production or to test their perceptual effects on listeners. A crucial prerequisite for this work is the 
ability to detect NLP in acoustic signals, which can then be correlated with biologically relevant 
information about the caller and with listeners’ reaction. NLP are often annotated manually, but 
this is labor-intensive and not very reliable, although we describe potentially helpful advanced 
visualization aids such as reassigned spectrograms and phasegrams. Objective acoustic features 
can also be useful, including general descriptives (harmonics-to-noise ratio, cepstral peak 
prominence, vocal roughness), statistics derived from nonlinear dynamics (correlation dimension),
and NLP-specific measures (depth of modulation and subharmonics). On the perception side, 
playback studies can greatly benefit from tools for directly manipulating NLP in recordings. 
Adding frequency jumps, amplitude modulation, and subharmonics is relatively straightforward. 
Creating biphonation, imitating chaos, or removing NLP from a recording is more challenging, 
but feasible with parametric voice synthesis. We describe the most promising algorithms for 
analyzing and manipulating NLP and provide detailed examples with audio files and R code in 
supplementary materials (https://osf.io/gs8u3/).

Introduction

Nonlinear phenomena (NLP) is an umbrella term for certain oscillatory states of the 
vertebrate sound generation system, or for transitions (bifurcations) between these states. They 
encompass phenomena such as frequency jumps, subharmonics, deterministic chaos, and 
biphonation (see Herzel et al. and Fig. 1 in Dunn et al. in this volume [update once DOI is 
available] for an overview of NLP classifications). The various NLP can be considered on three 
levels: (1) as oscillatory features of the voice production apparatus; (2) as features of the radiated 
acoustic voice signal; and (3) as phenomena that evoke certain sensory impressions and 
behavioral effects on the perceiving end of vocal communication. The study of NLP is a vast, 
technically demanding research domain. To limit the scope of this review and to keep it relevant 
for applied research in bioacoustics and psychology, we focus on the acoustic domain and provide
methodological guidelines and tools for answering two main research questions:

Question 1: What do NLP reveal about the caller? Here, the ultimate objective is to learn 
what biologically relevant information is available in the signal due to the presence of NLP. For 

1

*Author for correspondence (andrey.anikin@lucs.lu.se).
†Present address: Division of Cognitive Science, Department of Philosophy, Lund University, Box 192, SE-221 00 Lund, Sweden.

mailto:andrey.anikin@lucs.lu.se
https://osf.io/gs8u3/


example, we may be interested in whether NLP encode information about the age, health, mate 
quality, or motivational and affective state of the caller (e.g., [1,2]). Answering this question 
requires knowledge of the physiological reality of NLP production. Because this information is not 
directly observable, a variety of techniques are employed to infer it. Specifically, the task we focus 
on here is detecting NLP from a recorded acoustic signal (the blue path in Fig. 1). We also list the 
main methods for investigating voice production more directly, such as with high-speed imaging in 
vivo or via excised larynx experimentation (Table S1, see [3,4] for recent reviews), but do not cover 
them in detail because these methods are not widely available outside clinical voice science. Direct 
in vivo observation of voice production is particularly challenging in non-human animals, and 
empirical evidence is very sparse. Instead, we assume that researchers will normally only have 
access to audio recordings, although many of the discussed analytical techniques are also applicable
to physiological signals such as electroglottographic (EGG) recordings [5]. Likewise, computational
simulation methods – while very useful for creating biophysical models of phonation and 
understanding NLP at a fundamental level – are less relevant to NLP detection in audio recordings, 
and they are reviewed elsewhere [6,7]. 

Question 2: What effect do NLP have on listeners? It is one thing to establish what 
information is potentially available in a signal, and another to show that receivers actually attend to 
it. Listeners may also possess sensory biases, in which case the effect of a perceptual feature may be
partly decoupled from the biological information it encodes. For example, humans and many 
nonhuman animals strongly associate low frequencies [8], high intensity [9], and acoustic roughness
[10] with size and formidability, which callers can exploit to achieve acoustic size exaggeration. 
Ideally, this requires models linking objective acoustic properties with percepts, but human 
psychoacoustics is a long way from achieving comprehensive perceptual models, and even less is 
known about the perception of NLP in nonhuman animals. Fortunately, this is not an insuperable 
barrier to progress because a link between the presence of NLP in a perceived signal and the 
listeners' responses can be demonstrated empirically without fully understanding the underlying 
psychoacoustics, in two ways: with correlational designs or direct manipulation.

The traditional approach has been to compare the listeners’ reaction to otherwise similar calls 
with vs. without NLP in playback experiments (e.g., [11–13]; the orange arrow in Fig. 1). Apart 
from methodological simplicity, this approach has the further advantage that natural calls are used 
directly for playback, ensuring maximum ecological validity of the stimuli. The main drawback is 
that it is difficult to infer causality because the presence of NLP in natural vocalizations is strongly 
associated with other voice characteristics, especially with high intensity and fo [10,14]. Even if the 
stimuli with and without NLP are carefully matched on other relevant acoustic characteristics (e.g., 
as in [13]), it is difficult to ascertain that listeners attend specifically to NLP. Thus, a more powerful 
solution for inferring causality is to manipulate NLP experimentally while preserving all other 
acoustic characteristics of a vocalization (the green arrow in Fig. 1). It is desirable to repeat the 
manipulation in a wide range of stimuli that vary in their duration, fo range, caller characteristics 
such as sex and age, etc. to ensure that the results generalize to a broad range of vocalizations and to
increase the statistical power, which depends both on the number of stimuli and the number of times
each stimulus is evaluated [15]. Accordingly, perceptual studies of NLP require tools that can 
manipulate them in recordings with high precision and flexibility, and preferably in a user-friendly 
framework that will streamline the creation of many stimuli.

In this paper we aim to provide an up-to-date review of the analytical techniques and practical
tools for working with NLP in the context of these two research questions. We begin with a 
discussion of the simplest and most common approach to NLP detection – manual NLP annotation 
– highlighting its pitfalls and offering possible solutions and complementary measures such as 
general acoustic descriptives. We then consider each NLP type in turn, discussing suitable methods 
for their analysis and experimental manipulation. Given the intended research application, we do 
not cover all possible methods of creating NLP (e.g., with biomechanical/computational models of 
phonation), but focus specifically on their manipulation in recordings, defined here as adding or 
removing NLP episodes or changing their type in recorded or synthesized vocalizations that are 



naturalistic enough for playback experiments. The key theoretical considerations and algorithms are
covered in the main text at a conceptual level, but we also provide the datasets and complete code 
for all presented examples and simulations in supplementary materials (https://osf.io/gs8u3/).

Fig. 1 The Brunswik’s lens model of communication [16] applied to NLP research. Explanation in the text.

NLP Annotation and Quantification

NLP analysis in bioacoustics typically begins with researchers manually annotating NLP 
episodes by means of listening to each recording and either inspecting the raw (acoustic) signal in 
the time domain or scrutinizing some sort of signal feature visualization. The most common of these
is the spectrogram, but a number of other visualization tools exist, including phase space 
embeddings, recurrence plots, etc. (Table S1). When it comes to classifying the different NLP, this 
approach is time-consuming and often highly subjective, potentially suffering from several issues: 

1. Implicit or explicit variation of parameters for display generation has a major impact on NLP 
detection. For instance, variation of the spectrogram’s dynamic range (typically not reported 
in scientific publications) can be critical for whether subharmonics are discernible in the 
generated spectrogram or not (Fig. 2D).

2. As soon as an experimenter listens to a sound to decide whether NLP are present, two sorts of 
biases are potentially introduced. The first is an individual bias, which depends on the 
experimenter’s previous experiences and training. The second is an overall anthropocentric 
bias. In most cases, very little is known about NLP perception in the investigated species, and 
there is no guarantee that the features identified by human listeners are relevant to the studied 
animals. For example, humans are unusually good at pitch discrimination compared to many 
other mammals [17], potentially making minor frequency jumps in mammalian calls more 
salient to us than they would be to conspecifics. In contrast, high-frequency biphonation in 
dog whines may not even be audible to humans [18], not to mention NLP in ultrasonic calls 
like rodent vocalizations, which can only be detected visually or by transposing the recordings
several octaves down in frequency.

3. Finally, both manual and automatic detection of NLP would require a consensus among the 
bioacoustic research community concerning NLP classification, as well as a standardized 
approach to their assessment and interpretation. Despite notable efforts, such as signal typing 
conventions proposed for the human voice [19,20] and the NLP workshop in St. Etienne 
(2023) that led to this special issue, so far there is no consensus regarding even the nature of 
NLP and their basic types, much less the best approach to their detection and analysis. 
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For all these reasons, manual NLP annotations do not necessarily correspond to the ground 
truth of vocal production, or even of NLP perception in nonhuman species. Nevertheless, given its 
feasibility, manual annotation remains the go-to approach in NLP research, so it would be important
to ascertain how well it captures the reality of vocal production. In the absence of suitable datasets 
for doing so, we tested at least the inter-rater reliability with which several trained raters performed 
manual annotation of NLP episodes. Specifically, we asked the attendants of the NLP workshop in 
St. Etienne in June 2023 to note all NLP episodes in a randomly selected subset of 23 vocalizations 
from a published corpus, all of which were reported as containing some NLP in the original 
publication [21]. The recordings included 10 human nonverbal vocalizations (5F + 5M), 10 speech 
samples (5F + 5M), and three samples of a cappella singing (2F + 1M); the duration varied from 2 
to 10 s. Ten raters independently annotated four NLP types (frequency jumps, sidebands, 
subharmonics, and chaos). We then calculated the agreement between all possible pairs of raters 
about the status of each 100 ms frame. The average agreement was 80% for the presence or absence
of NLP per frame, 60% for NLP type (excluding frequency jumps, which have no duration), and 
60% for the presence of a frequency jump within ±50 ms of one annotated by another rater (see 
vignette manual_annotation for the complete analysis of inter-rater agreement). Thus, highly 
trained and motivated raters are reasonably consistent at detecting NLP episodes in audio recordings
of human voice (sidebands, subharmonics, or chaos), but the classification of NLP types appears to 
be less reliable. Crucially, manual annotations have better internal validity as measures of perceived 
nonlinearities or general harshness in the voice (especially when working with human voices), 
making them more suitable for research on NLP perception rather than NLP production.
 To ensure that the results of manual annotation are as accurate as possible, it is important to 
avoid a few common pitfalls. Given the importance of the chosen visual representation (Fig. 2), it is
helpful to compare several approaches and settings. In particular, the spectrogram can be juxtaposed
with the raw waveform (oscillogram), which is an under-utilized, but very informative medium for 
detecting NLP such as slow amplitude modulation (Fig. 2A). The spectrogram itself may need to be 
adjusted depending on the acoustic characteristics of each analyzed fragment. Short windows are 
good for resolving rapid transitions that could otherwise be blurred (e.g., frequency jumps) or 
misclassified as NLP (e.g., rapid frequency sweeps in bird songs, which may appear as sidebands if 
the window is too long). On the other hand, extremely long windows upwards of 400-500 ms may 
be necessary for visualizing stable, but very low-frequency amplitude modulation in calls such as 
alligator bellows [22]. It may also be helpful to try less familiar visual representations such as time-
frequency reassigned spectrograms or wavelet-based transforms [23,24], phasegrams [25], and 
modulation power spectra [26,27]. These approaches are demonstrated in vignette visualization in 
the supplements (https://osf.io/gs8u3/), and we provide ready-to-use R code for their 
implementation.

Quantitative analysis of acoustic signals is often used as a complement to manual annotation, 
or even as the only feasible approach when the analyzed corpus of recordings is very large. This 
saves time, dispenses with the need for trained raters, and the results are both objective and 
reproducible. The main drawback is that most measures are only indirectly affected by NLP 
(“General acoustic measures” in Table S1), and individual metrics are typically affected by a 
number of NLP in a complex fashion. For example, a drop in signal periodicity (e.g., as measured 
by the harmonics-to-noise ratio [HNR]) might be due to NLP or some other causes (background 
noise, breathy phonation, etc.), and this lack of specificity can have major implications for the 
substantive interpretation of obtained results. In addition, most software for voice analysis, such as 
the popular open-source toolbox Praat [28] and its algorithms, is designed for analyzing nearly-
periodic signals, typically speech. Other measures, discussed in the sections on each NLP type 
below, are more theoretically grounded, being derived from nonlinear dynamics (“Nonlinear time 
series analysis” in Table S1), or designed to capture particular NLP types (“NLP-specific acoustic 
measures” in Table S1). 

As an exemplary check of NLP specificity, we calculated a variety of acoustic features 
(generic, NLP-specific, and derived from nonlinear time series analysis), frame by frame, in 5000 
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fully synthetic vocalizations (with ground truth of NLP presence and type known a priori), as well 
as in 1518 audio recordings of human nonverbal vocalizations, singing, and speech from [21] with a
total duration of two hours and nearly 300,000 overlapping STFT frames 50 ms each (with NLP 
annotated manually). We then compared the values of each acoustic feature in STFT frames 
depending on the presence and type of NLP (see vignette analysis_any-NLP). The main conclusion 
was that the presence of NLP explained vastly more variance of the analyzed acoustic measures in 
synthetic sounds compared to annotated recordings, which could indicate that manual NLP 
annotations are not entirely accurate (as suggested by the analysis of inter-rater reliability above), 
and/or that real-life recordings are too “messy” for this kind of acoustic analysis to pick up NLP-
specific features. Two measures, the amount of amplitude modulation in the “roughness” frequency 
range and Cepstral Peak Prominence (CPP), appeared to be most robust to noise in real recordings. 
Notably, however, none of the tested features were really suitable for discriminating between 
vocalizations with and without NLP, and especially not for distinguishing deterministic chaos in 
voiced fragments from turbulent noise in unvoiced fragments. 
 

Fig. 2 Visualizing NLP: some common problems and solutions.



 
Having briefly considered the difficult challenge of annotating NLP manually or using proxy 

acoustic measures, we now turn to the algorithms that have been designed for analyzing and 
manipulating specific NLP types.

Frequency jumps

Sudden changes of fo, known as frequency jumps or pitch jumps, have primarily been 
researched in the context of human singing [29–31], but they are also found in a variety of animal 
calls [13,32,33] and in human nonverbal vocalizations such as screams [21,34] and baby cries [35]. 
Their possible causes include both conditions intrinsic to the vocal folds [36,37] and source-filter 
interaction with the resonances of either the supralaryngeal vocal tract or the tracheal vocal tract 
[38–41] ; see Herbst & Elemans in this issue for more details). The best understood example is the 
transition between vocal registers in human singing, often between the modal or chest voice and the
falsetto [31,42,43]. Such voice breaks can occur in both upward and downward directions 
[29,31,32,36,41,44,45]. Crucially, frequency jumps during register transitions are not merely rapid 
fo glides: the larynx suddenly transitions into a different vibratory mode, often with brief episodes of
subharmonics or other nonlinearities during the transition [31,37]. Thus, true frequency jumps 
constitute bifurcations and should be considered a type of NLP.

Analysis

 Sophisticated algorithms have been tested in human voice science to detect frequency jumps  
(often in the context of register transitions) from the electroglottographic signal (EGG) based on 
statistics such as sample entropy [30,42,46]. In practice, frequency jumps are often annotated 
manually based on inspecting narrowband spectrograms, and perhaps also listening to the 
recordings, although the exact method is seldom specified [13,21,33]. As with all NLP, this 
introduces subjectivity in the analysis, particularly when human listeners annotate the vocalizations 
of other species because of potential differences both in voice production mechanisms and in the 
perception of pitch discontinuities. A further challenge is posed by rapid fo variation caused by 
super-fast muscles in some animal species that might – without proper analysis tools – be mistaken 
for a frequency bifurcation [47]. 

To ensure reproducibility and make the analysis more objective, could frequency jumps be 
detected automatically? Despite the apparent simplicity, even basic fo detection is not a trivial task 
in itself  [48]. Furthermore, once fo contours are extracted, and assuming that these are correct, it is 
not always obvious what constitutes a discontinuity. An algorithmic jump detector might look for fo 
changes in continuously voiced fragments that exceed the average rate of fo change before and after 
the focal frame by a certain threshold. We compared the results of such automatized analysis with 
manual annotation of frequency jumps and obtained a rather poor match (see vignette 
analysis_freqJump). As noted above, inter-rater agreement was also far from perfect for frequency 
jumps. An additional difficulty is that frequency jump detection requires good time resolution of fo 
tracks, making tracking errors more likely and time-consuming to correct manually.

Manipulation

Frequency jumps are relatively straightforward to manipulate (add, remove, or modify) in 
recordings of human voice or animal vocalizations using high-fidelity pitch-shifting algorithms that 
can modify fo in existing recordings, while preserving other spectral properties such as vocal tract 
resonances [49]. The two most common approaches are pitch-synchronous overlap-and-add (e.g., in
Praat [28]) and phase vocoding (e.g., in the CLEESE toolbox [50]), which operate in the time 
domain and frequency domain, respectively. Manipulation of existing recordings is preferable when
the required fundamental frequency shift is relatively small because this method preserves all other 
characteristics of the original recording (Fig. 3A-B), but it may not work very well when the jumps 
are numerous and/or large. Voice synthesis offers more control (Fig. 3C-D) and is less likely to 



introduce artifacts, but it may require more work unless the calls are acoustically very simple (e.g., 
short pure tones). 

Whichever method is used, the manipulated vocalizations should sound natural, which is not 
merely a matter of avoiding artifacts of (re)synthesis [49], but also of ensuring a plausible spectro-
temporal context for each jump (e.g., fo would normally jump upward during an ascending 
frequency sweep, and vice versa), ideally with a naturally-sounding concomitant change in 
amplitude and voice quality. It may thus be safer to find a recording with a frequency jump and to 
remove it by smoothing out the fo contour, rather than to introduce a new frequency jump where 
there was none originally (the same reasoning applies to other NLP as well). Finally, the average fo 
of a recording should not be greatly affected by manipulating frequency jumps, which would 
otherwise constitute a confound. For instance, the elimination of a frequency jump in Fig. 3A-B has
no effect on the mean fo, whereas the manipulation of frequency jumps in Fig. 3C-D changes the 
mean fo from 420 to 440 Hz, which should perhaps be compensated for by means of slightly 
adjusting fo in the preceding fragment.

Despite being relatively simple to manipulate, frequency jumps are arguably the least 
understood NLP outside human singing, having been experimentally investigated in only a few 
bioacoustic studies [34,51–53]. More studies with direct manipulation of frequency jumps are 
needed to shed light on their communicative significance.

Fig. 3 Manipulating frequency jumps in recorded (A-B) and synthetic vocalizations (C-D). The original recording of a 
woman’s scream shown in panel A was pitch-shifted with a phase vocoder to smooth out the frequency jump at ~520 
ms from 1880 to 1750 Hz in panel B. The human roar shown in panels C-D is fully synthetic, making it 
straightforward to add or remove two rapid frequency jumps at ~1.5 s without affecting other acoustic characteristics.

Low-Frequency Amplitude and Frequency Modulation

Modulation can be of two basic types. Frequency modulation (FM) corresponds to cyclic 
changes of fo itself; a familiar example is FM in the range of 4-8 Hz in classical Western singing, 
known as vibrato [54]. Amplitude modulation (AM, related to musical tremolo) corresponds to 



cyclic changes of the waveform amplitude envelope, as when a trilled /r/ modulates the airflow. At 
least in human singing, vibrato (FM) is typically accompanied by some amplitude modulation 
(AM), so in practice these two phenomena are often present simultaneously [55,56]. In terms of 
system dynamics, modulation turns a limit cycle in the phase space into a torus [57,58]. Looking at 
a spectrogram, both AM and FM can produce sidebands around each fo harmonic if the modulation 
frequency is much lower than fo (Fig. 4).

The modulation frequency can be independent of fo or coupled with it in some rational 
fraction such as 3:2 or 2:1, in which case we speak of subharmonics instead of modulation [59]. To 
complicate matters further, irregular AM with variable frequency and amplitude does not create 
visible sidebands, but simply produces a noisy-looking spectrogram and an irregular, harsh-
sounding voice quality that may look and sound similar to chaos (Fig. 4). For example, using high-
speed imaging, [60] showed that rock singers can voluntarily make supralaryngeal mucosa vibrate, 
creating either subharmonics or irregular AM even when the vocal folds are vibrating in a quasi-
periodic fashion. Furthermore, the same production mechanism – simultaneous vibration of 
aerodynamically coupled vocal folds and supralaryngeal structures such as the ventricular folds – 
can also create true deterministic chaos [61]. In sum, low-frequency modulation is a rather complex 
and vaguely defined, albeit very common, NLP category. Bioacousticians often label anything that 
produces visible sidebands simply as sidebands, remaining agnostic as to the underlying 
mechanism. 

Analysis

FM is relatively straightforward to visualize on a spectrogram and to measure if it is slow 
relative to fo. For a slow sinusoidal FM, the frequency can be estimated directly from a spectrogram 
as the reverse of a single period of fo oscillation (5 or 10 consecutive periods can be averaged to 
improve the precision). When conceptually considering a nonsinusoidal FM, the spectrum of the fo 
contour can be searched for spectral peaks that correspond to FM frequencies. For instance, [59] 
found two such peaks – two dominant frequencies – in the vibrato produced by Freddie Mercury. 
Two main metrics are typically computed: modulation rate (the vibrato frequency) and modulation 
extent (the vibrato amplitude). Depending on the method of visualization and FM frequency, FM 
can visually appear either as vibrato (slow FM, short analysis window) or as sidebands (fast FM, 
long analysis window). If FM becomes very rapid relative to fo, the individual cycles of modulation 
can no longer be resolved with a standard spectrogram because the instantaneous frequency changes
too much within an analysis window (as this window must be kept long enough to resolve the fo 
itself). As a result, the spectrogram of a signal with rapid FM will show sidebands around fo 
harmonics instead of vibrato, making the situation visually indistinguishable from AM (Fig. 4). For 
instance, a conventional spectrogram with a window length of 100 ms in Fig. 2B shows strong and 
stable sidebands, whereas a time-frequency reassigned spectrogram with a window length of 10 ms 
still captures the 50 Hz FM while preserving reasonable frequency resolution (a conventional 
spectrogram with a 10 ms window cannot even resolve the fo itself at 150 Hz). Perceptually, rapid 
FM also no longer resembles vibrato; for instance, the tone in Fig. 2B sounds like a steady, 
unmodulated note with the same pitch as FM frequency (50 Hz).

The easiest method of estimating AM frequency is to measure the period of one or several 
adjacent modulation cycles on an oscillogram (Fig. 4). More formally, AM can be measured from 
the amplitude envelope or from the modulation spectrum. The first method is based on extracting a 
smoothed envelope (e.g., as the root mean square amplitude or the magnitude of the analytical 
signal obtained with the Hilbert transform), which is then bandpass-filtered to focus on the range of 
AM frequencies of interest to the researcher. Peaks in the spectrum of this amplitude envelope 
correspond to relatively stable AM frequencies, whose magnitude is directly proportionate to AM 
depth. The second method begins with generating a modulation spectrum, which is a two-
dimensional Fourier transform of the spectrogram often used for calculating the perceptual 
roughness of a sound [26,27]. Again, peaks along the temporal modulation dimension of the 
modulation spectrum, averaging across the spectral modulation dimension, indicate the presence of 



relatively stable and pronounced AM, and the magnitude of these peaks is related to AM depth. 
Depending on which method is used, the range of detectable modulation frequencies depends on the
amount of smoothing of the envelope or the window length and step used to produce a modulation 
spectrum. 

Fig. 4 Signal modulation produces a wide variety of sidebands about the harmonics of fo. A steady harmonic sound 
with an fo of 1 kHz is amplitude- or frequency-modulated; all spectrograms use a window length of 50 ms. See also 
vignette synthesis_AM-FM.



Both methods of measuring AM with the soundgen function analyze() were optimized by 
means of synthesizing and analyzing 10,000 vocalizations (see vignette analysis_amDep). In our 
simulations, AM frequency estimates derived from the envelope were found to be less reliable when
the true modulation frequency dropped close to the lower end of the analyzed frequency range, 
whereas the modulation spectrum estimates erred when AM was too rapid relative to the window 
length used to create the modulation spectrum (here, 15 ms). The two methods can thus be 
combined to capture a wider range of AM frequencies. An important practical tip is to narrow down 
the range of considered AM frequencies as much as possible, based on what is known about the 
species’ biology and vocal behaviors.

Manipulation

Slow, vibrato-like FM can be introduced in a recording using the same pitch-shifting 
techniques that were described above for frequency jumps. Singing voice synthesis is also routinely 
performed with a controlled amount of vibrato (e.g., [62–64]). Rapid FM is an uncommon 
manipulation to perform on an existing recording because pitch-shifting algorithms can introduce 
artifacts at high modulation rates, but it is achievable with parametric voice synthesis. AM is 
probably the easiest type of NLP to add to a recording: all that is needed is to multiply the sound by 
a modulating waveform ranging from (1 – AM depth) to 1. If the modulating waveform is a pure 
sine, which may be uncommon in animal vocalizations, it creates a single pair of new harmonics at 
±AM frequency around each partial of fo. More complex, nonsinusoidal AM creates multiple 
harmonics at ±AM frequency x integer, which form characteristic sidebands around each fo partial 
(Fig. 4). This is a popular method for creating rough-sounding voices, which can even be applied in 
real time [50,65]. The manipulation of AM and FM is demonstrated together with subharmonics in 
vignette synthesis_AM-FM.

Subharmonics

Subharmonics are additional frequency components (fsub) at a rational fraction of fo, typically 
at fsub = fo/2 or fo/3, but potentially more complex situations are possible such as fo: fsub = 3:2 [66,67]. 
They can be produced by partly desynchronized, but still strongly coupled vocal folds or parts 
thereof that vibrate at harmonically related frequencies, which can be caused by the entrainment of 
two vibratory modes of the vocal folds [67–69], asymmetric tension on the two vocal folds [70–72],
or source-filter interactions with supraglottal [39] or subglottal [41] resonances. Another possible 
origin of subharmonics is simultaneous frequency-locked vibration of two oscillators such as the 
vocal folds and the ventricular folds [59,73–75] or aryepiglottic folds [76]. When subharmonics are 
caused by AM, the modulation depth can be defined as the difference in the amplitude of adjacent 
glottal cycles expressed as a proportion of the sum of the two amplitudes; in the case of FM, it is 
defined as the difference in the periods instead of amplitudes of adjacent cycles [77,78]. Amplitude 
and frequency modulation is thus a more general phenomenon, of which subharmonics are an 
important and common special case [77]. 

Analysis

Subharmonics can be detected and quantified in several ways. One approach is to literally 
compare, in the frequency domain, the amplitude of spectral peaks corresponding to fo partials and 
subharmonics. The only available open-source algorithm of this kind [79] appears to produce valid 
estimates of the strength of subharmonics provided that it is properly tuned [77]. Our own 
simulations suggest that, with realistic noisy recordings, a more robust method is to work with the 
cepstrum, looking for peaks at a fraction of fo. The ratio of the magnitude of two cepstral peaks, one 
corresponding to fo and the other to a potential subharmonic, is an approximately linear function of 
the logarithm of subharmonic depth, which makes it straightforward to calibrate the subharmonic 
detector against a benchmark of synthetic sounds with known subharmonic depth. Once calibrated, 
this algorithm can approximately measure the depth of subharmonics for a wide range of fo and 
signal-to-noise ratios, achieving an overall Pearson’s correlation of r = .64 between true and 



measured subDep when fo is detected correctly (vignette analysis_subh). Obviously, there exists a 
“chicken-and-egg” problem: fo tracking must be accurate, otherwise estimates of subharmonic 
frequency and depth are meaningless, yet the very presence of subharmonics complicates fo 
detection. One approach is to correct fo contours manually prior to analyzing subharmonics; another 
is to label episodes of subharmonics first and to pass on this information to the fo tracker. If neither 
of these options is feasible, it may be safer to exclude this particular signal from the analysis.

Manipulation

At least three distinct ways of manipulating subharmonics have been described in the 
literature. The first is to multiply the signal by a low-frequency modulating waveform, which can 
produce subharmonics if the modulation frequency is kept at fo/2 (or any other integer rate) at each 
time point [65]. This method is straightforward to apply to any sound, including instrumental music 
[80]. The main limitation is that it is critically dependent on accurate fo tracking, which can be 
problematic when working with aperiodic or relatively noisy signals. The second approach is to 
vary the amplitude and timing of adjacent glottal pulses during voice synthesis [81]. For instance, 
the diplophonia parameter in the well-known Klatt synthesizer controls the extent to which every 
second glottal cycle is delayed in time and attenuated in amplitude [82]. Finally, a brute-force 
approach is to literally synthesize new partials spaced by a fraction of fo [83]. Like the diplophonia 
method, this requires parametric synthesis, but the connection between control parameters and the 
output is more transparent, and any fo:fsub  ratio can be achieved. In particular, the depth of 
subharmonics is then specified in the frequency domain as the amplitude of subharmonic (fsub) 
partials relative to fo partials, which is more perceptually relevant compared to time-domain 
definitions [81].

Biphonation

Signals with two frequency components are identified as quasi-periodic in the nonlinear 
dynamics literature, and their phase trajectory forms a torus [84]. Biphonation is commonly 
distinguished from other tori by stipulating that both frequencies should evoke pitch sensations 
(unlike low-frequency modulation), change independently, and not form a rational ratio (unlike 
subharmonics) [57,58]. An additional requirement is sometimes proposed that both frequencies 
should be produced by a single sound source – for example, by the same half of the syrinx [85]. The
term diplophonia, common in the voice literature, does not make such distinctions and includes any 
two-frequency phenomena [66]. 

Biphonation senso stricto, with two or even three independent audible frequencies, has been 
reported in human pathological voices [57] and singing [86], as well as in vocalizations of other 
mammals [18,87–89] and birds [85,90]. The two sources may be physically coupled: for example, 
the higher frequency (go) can be amplitude-modulated by the lower fo, generating complex 
sidebands [88,89]. On the other hand, two fully independent frequencies may be produced without 
noticeable coupling, as in bird songs consisting of two independently controlled sound sources in 
the syrinx [90]. 

Analysis

The task of tracking two independent frequencies is challenging and rather exotic in 
bioacoustics. There are numerous proposed solutions for multi-pitch estimation in polyphonic music
[91] and conversation analysis [92], but their robustness and applicability to biphonation remain 
largely unknown. A rare exception is the work by Aichinger, who developed and tested algorithms 
for simultaneous tracking of two frequencies in pathological human voices, essentially by means of 
testing several paths through fo candidates [93,94]. Tools for AM analysis may also be applicable 
when one frequency is many times lower and amplitude-modulates the higher one, but otherwise 
manual annotation and description based on the spectrogram and the phase space are the only viable
approaches at present.



Manipulation

Biphonation can be created by mixing separate recordings or (re)synthesized versions of two 
or more vocal sources. The key challenge is that these vocal sources may be coupled: for example, 
one may be modulating the other, or fo and go may be momentarily locking to each other and/or to 
resonance frequencies. There are some workaround solutions such as adding a multiplicative term 
when mixing the two sounds in order to achieve modulation (see vignette synthesis_biphonation). 
Potentially tractable cases for synthesizing biphonation involve fully independent sound sources, 
such as in bird and whale songs, but there is only limited work in this area [95]. Overall, however, 
two-frequency calls like horse whinnies [87] or wapiti bugles [88] are some of the most challenging
vocalizations to work with.

Chaos

An entire branch of mathematics, known as chaos theory, has been developed to model the 
behavior of deterministic systems that nevertheless display seemingly random or chaotic behavior. 
More formally, chaotic systems are deterministic, bounded, aperiodic, and sensitive to initial 
conditions [96]. Belying this apparent complexity, the attractors of chaotic systems can be relatively
simple when appropriately reconstructed in the phase space. Applied to vocal production, the term 
chaos designates “nonrandom noise” [39], namely highly irregular vibration of the vocal folds and 
other coupled structures [97] that is deterministic, being the result of a mechanically simple system 
with relatively few degrees of freedom, yet seemingly random or noisy. Thus, aspiration noise as 
in /s/ would not be described as chaos [19] because the source of randomness in this case is 
turbulence in a very high-dimensional system, and its attractor in low-dimensional phase space is 
structureless.

Analysis

Like other NLP, chaos is often annotated manually in audio recordings. There is typically a 
residual trace of the original fo and perhaps even a few of the lower harmonics on the spectrogram, 
but with a varying amount of spectral smearing, making chaotic phonation look superficially similar
to turbulent noise (e.g., whispered speech). Furthermore, given the limitations of spectrograms in 
terms of the tradeoff between time and frequency resolution, they are potentially inappropriate for 
distinguishing between chaos and irregular AM/FM. Given its similar appearance, chaos is also 
difficult to distinguish visually in the time domain from noise or signals containing FM. Therefore, 
inspection of the waveform is not very helpful, except that it sometimes reveals other causes of 
chaos-like spectral noise such as rapid sound onsets, clicks, or recording artifacts (Fig. 2C).

The most powerful visual tool for distinguishing between (high-dimensional) noise and (low-
dimensional) chaos is the phase space (see vignette phasegrams). Formal mathematical methods of 
nonlinear time series analysis have also been applied to voice analysis, mostly in the context of 
quantifying voice pathology (dysphonia). A great variety of visualization aids and measures have 
been explored, including the correlation dimension D2, Lyapunov exponents, Poincare map, fractal 
dimension, Kolmogorov entropy, Shannon entropy, Renyi entropy, correlation entropy, Hurst 
exponent H, Lempel-Ziv complexity, etc. Some measures may be more noise-robust and tolerant of 
nonstationary signals: for instance, the correlation dimension D2 is claimed to tolerate noise levels 
of 8% or even up to 20%, and to perform robustly with relatively short voiced frames of only 20 ms
in duration [98]. D2 was found useful for detecting voice pathology in several studies [98,99]. For 
instance, it was elevated in patients with vocal tremor caused by Parkinson’s disease or vocal polyps
[100] and moderately correlated with subjectively rated dysphonia [101].  D2 and the largest 
Lyapunov's exponent also discriminated between normal and irregular phonation in excised 
larynges [102–104]. However, other work suggests that D2 is only meaningful in noise-free and 
relatively periodic signals [105], making it less suitable for detecting episodes of chaos in field 
recordings. In fact, D2 and shimmer were reported to be elevated in a cappella opera singing 
compared to other musical genres, possibly because of the vibrato [106]. Accordingly, even when 



dealing with high-quality recordings of steady vowels, some authors recommend classifying the 
voices manually into three or four types, from mostly periodic to fully aperiodic, and excluding the 
unsuitable voice types from the analyses of fo perturbation and nonlinear measures [19,20], which 
brings us full circle back to manual classification and annotation. 

Our own analysis and simulations suggest that D2 is indeed among the most robust measures 
derived from nonlinear dynamics, but still far from a reliable “litmus test” for chaos in relatively 
noisy real-life recordings (see vignette analysis_any-NLP). Computationally cheaper measures 
include summaries of Poincare sections such as their Shannon entropy or the Phasegram 
Complexity Estimate, which is calculated as the one-dimensional correlation dimension along each 
Poincare section [97]. An important direction for future work would be to better validate D2 and 
related nonlinear measures for detecting NLP in various species because most research to date has 
focused rather narrowly on diagnosing human voice pathology. 

Tools for nonlinear time series analysis can be found in specialized software like TISEAN 
[107] and in various R libraries. An important proviso is that the effective use of these tools requires
advanced mathematical expertise for diagnostics and customization. An additional – and often 
neglected – condition is that the input for nonlinear analysis is supposed to be a noise-free and 
stationary signal, where the mean and variance do not change over time. Real-life recordings like 
continuous speech or nonverbal vocalizations routinely violate the key assumptions of nonlinear 
analysis, being relatively short, noisy, and nonstationary – for example, fo can noticeably change 
within an analysis window [96,101]. In particular, just like perturbation measures (jitter and 
shimmer) are not meaningful when fo cannot be detected, nonlinear dynamic analysis is not 
applicable to high-dimensional noise of the kind found in breathy or whispery voices [19] and in 
recordings with a low signal-to-noise ratio. 

Another challenge is to determine the optimal lag for reconstructing the phase space when the 
signal is no longer periodic. This lag is normally set to approximately 1/4 of the fundamental period
to reduce the correlation of the original and time-delayed versions of the signal, and the optimal 
value can be estimated from the autocorrelation or mutual information function [96]. Alternatively, 
we can perform a Hilbert transform and plot its real versus imaginary components [25,46]. Because 
the phase of each frequency component is shifted by ±pi/2, this decorrelates the components and 
produces a suitable phase space without the need to determine fo, which is nearly impossible during 
episodes of chaos (see vignette phasegrams). 

Manipulation

Deterministic chaos in animal vocalizations is sometimes imitated simply by inserting a short 
episode of white noise into a tonal call [108,109]. There is some evidence that birds respond 
similarly to synthetic chaotic time series and white noise [110]. However, chaos found in natural 
calls retains residual periodicity and formant structure, making it different from both white noise 
and mathematically constructed chaos such as the output of a logistic map. We have therefore tested
an alternative method of imitating chaos by means of stochastically perturbing the periodicity of a 
vocal source. Because of the stochastic implementation, this is not true low-dimensional 
deterministic chaos, but it has been shown to create a perceptually adequate imitation thereof both 
in human nonverbal vocalizations [34,111,112] and in puppy whines [52]. As implemented in 
soundgen [83], this is achieved by adding strong and very rapid Gaussian jitter to fo. This works for 
any fo and jitter depths because, in contrast to most algorithms for voice synthesis, jitter in soundgen
corresponds to perturbing the instantaneous frequency repeatedly within glottal cycles rather than 
resetting it at cycle boundaries [113]. Alternatively, random and very rapid jumps of the 
instantaneous frequency (again, not synchronized with cycle boundaries) can be added between two
fo values: a latent fo contour and another value such as a nearby formant. This is based on the 
observation that chaotic behavior is often brought about by an interaction between two or more 
oscillation modes [97], which can be activated simultaneously and superimposed [114]. Examples 
of both approaches are demonstrated in vignette synthesis_chaos.



Conclusions

There is mounting evidence that NLP encode a wealth of biologically important information 
about the caller, from individual identity to emotional state, and that listeners carefully attend to 
these acoustic features. In order to unlock the potential of NLP for a better understanding of vocal 
communication in the animal world and in human societies, it is crucial to have effective, accurate, 
and user-friendly tools for working with these acoustic phenomena. In this methodological review, 
we provide a necessarily brief, but relatively comprehensive description of modern techniques for 
NLP analysis, as well as for their manipulation and perceptual testing in playback experiments.

When it comes to NLP analysis, many challenges and exciting opportunities still lie ahead. To
make claims about the presence of NLP, their episodes must be annotated, but both manual and 
automatic approaches have their particular drawbacks. Even when performed by trained 
researchers, the annotation task is far from trivial, and we describe several common pitfalls and 
suggest solutions for improving its accuracy. Several automatically extracted acoustic descriptives 
do capture some of the NLP-related variation in voice quality, but these are typically not specific 
enough to infer the presence of NLP in general or of their specific types. The mathematical tools of 
nonlinear time series analysis are potentially useful for detecting chaos, but the measures proposed 
so far are not sufficiently robust or user-friendly to be of much practical use, with the possible 
exception of the correlation dimension D2 and the use of the phase space as a visual aid. This calls 
for further work on applied NLP analysis and a better consensus on the best practices in the 
scientific community.

The domain of applied NLP manipulation and synthesis appears to be more mature as several 
effective experimental techniques have now been developed and validated. One major tool to 
exploit is pitch-shifting algorithms, which can create frequency jumps and frequency modulation 
with high precision, sometimes even in real time. Amplitude modulation and subharmonics are also 
relatively straightforward to add to a recording. Voice synthesis is the ultimate tool for the most 
demanding NLP manipulations, including chaos. A major advantage of parametric synthesis is the 
ability not only to add a specific NLP, but also to remove it. A promising approach is to find 
prototype recordings with various NLP and then resynthesize them for playback experiments, either
removing the NLP completely or modifying their type (e.g., turning an episode of chaos into 
subharmonics). With this method, the manipulated NLP will appear in their natural spectro-
temporal context, greatly improving the ecological validity of manipulated stimuli compared to 
simply inserting NLP in an arbitrarily chosen location in a recording that originally did not contain 
NLP at all. 

In future, the work on NLP detection and manipulation can greatly benefit from better 
theoretical and methodological integration between clinical voice research and bioacoustic or 
psychological studies aiming to understand the communicative function of NLP. A particularly 
welcome development would be the release of freely available, extensive, and well-documented 
audio collections covering various NLP in a range of species. This will facilitate further 
methodological advances and provide suitable training datasets for machine-learning algorithms. 
NLP detection and annotation, in particular, is a natural task for neural networks – with the 
important proviso that the training data must be valid. Because expert annotations of specific NLP 
types in audio recordings may not be entirely reliable, the training data should ideally be more 
objective (e.g., EGG or high-speed imaging) if the goal is to understand vocal production. On the 
other hand, expert annotations can provide highly valid training data for algorithms whose aim is to 
capture the perceptual salience of NLP rather than the precise mechanism of their production. 
Psychoacoustic modeling of NLP perception is another major area for future research, particularly 
in nonhuman animals. We hope that this special issue will catalyze the multifaceted field of NLP 
research, promoting better integration and data sharing between different disciplines and research 
groups.
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