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Abstract
Formants (vocal tract resonances) are increasingly analyzed not only by phoneticians in speech but also by behavioral scien-
tists studying diverse phenomena such as acoustic size exaggeration and articulatory abilities of non-human animals. This 
often involves estimating vocal tract length acoustically and producing scale-invariant representations of formant patterns. 
We present a theoretical framework and practical tools for carrying out this work, including open-source software solutions 
included in R packages soundgen and phonTools. Automatic formant measurement with linear predictive coding is error-
prone, but formant_app provides an integrated environment for formant annotation and correction with visual and auditory 
feedback. Once measured, formants can be normalized using a single recording (intrinsic methods) or multiple recordings 
from the same individual (extrinsic methods). Intrinsic speaker normalization can be as simple as taking formant ratios and 
calculating the geometric mean as a measure of overall scale. The regression method implemented in the function estimat-
eVTL calculates the apparent vocal tract length assuming a single-tube model, while its residuals provide a scale-invariant 
vowel space based on how far each formant deviates from equal spacing (the schwa function). Extrinsic speaker normalization 
provides more accurate estimates of speaker- and vowel-specific scale factors by pooling information across recordings with 
simple averaging or mixed models, which we illustrate with example datasets and R code. The take-home messages are to 
record several calls or vowels per individual, measure at least three or four formants, check formant measurements manually, 
treat uncertain values as missing, and use the statistical tools best suited to each modeling context.

Keywords  Formants ·  Speaker normalization · Vocal tract length normalization · Vowel · Body size

Spectral manifestations of vocal tract resonances, known as 
formants, have long been analyzed in speech by linguists 
interested in acoustic differences between phonemes. The 
pattern formed by the first few formants, in particular, is 
largely responsible for the perceptual differences between 
vowels: when we hear the vowel in heed as different from 
had, it is largely the relative position of the first two for-
mants, F1 and F2, that is responsible (Behrman, 2021; 

Johnson, 2011; Titze, 2000). Because longer vocal tracts 
have lower resonances, absolute values of formant frequen-
cies depend on the size of the vocal tract and thus, indi-
rectly, on the size of the speaker (Pisanski et al., 2014). In 
phonetics and automatic speech recognition, this creates a 
confound, and researchers often employ ‘normalization’ 
methods meant to segregate information related to the size 
of the speaker (i.e., vocal tract length, VTL) from informa-
tion related to the linguistic content of the signal (i.e., the 
formant pattern). However, both types of information – for-
mant pattern and VTL – are often of interest when inves-
tigating paralinguistic information. For example, speak-
ers may manipulate their VTL in the context of acoustic 
body size exaggeration or dominance displays (Charlton & 
Reby, 2016; Pisanski et al., 2016b), and VTL estimates are 
often extracted from formants measured in speech (Belyk 
et al., 2022; Cartei et al., 2019) and in animal calls (Fitch, 
1997; Pfefferle & Fischer, 2006; Reby et al., 2005; Reby 
& McComb, 2003). Formant patterns are also relevant in 
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many non-speech vocalizations in relation to body size exag-
geration (Pisanski et al., 2022) or the ability of non-human 
animals to articulate (Boë et al., 2017; Fitch et al., 2016).

Given the importance of formants as paralinguistic cues 
in nonverbal acoustic communication, formant analysis is 
increasingly performed outside phonetics and with differ-
ent goals in mind. Instead of being a nuisance parameter, 
VTL is often the main measure of interest, and vocal tract 
normalization becomes both more challenging and more 
indispensable outside the human VTL range – for example, 
when articulatory abilities are compared in different animal 
species. While the available literature on speaker normali-
zation is extensive, it is often highly technical, and there is 
no consensus about which of the variety of proposed meth-
ods are more applicable to particular research contexts, no 
simple guidelines, and few off-the-shelf tools for actually 
implementing the described algorithms. Above all, the lit-
erature on formant analysis and speaker normalization is 
written with human phonetic research in mind, and it does 
not necessarily address the needs of a researcher from other 
fields such as psychology or animal behavior. To fill this gap, 
in this paper we present up-to-date solutions for measur-
ing and verifying formant frequencies, estimating VTL, and 
extracting size-invariant formant patterns with a particular 
focus on those situations in which an ‘easy’ solution is not 
available (i.e., when linguistic content cannot be perfectly 
controlled for).

All proposed software solutions are freely available and 
open-source; we also share well-documented R code needed 
to prepare the data and to fit the statistical models described 
in the text (supplements: https://​osf.​io/​4c2r9/). In this paper, 
we focus on a few algorithms that are easy to implement, yet 
powerful and robust, and do not discuss methods that are 
now largely obsolete, such as calculating formant dispersion 
by averaging the spacings between adjacent formants (Fitch, 
1997; Pfefferle & Fischer, 2006). An extensive comparison 
of historically described normalization algorithms can be 
found in the excellent recent review by Johnson and Sjerps 
(2021).

Measuring formants

The first step in the analysis of both formant patterns and 
VTL is to measure formant frequencies. The standard algo-
rithm for this task is linear predictive coding (LPC). LPC 
relies on the mathematics of z-transforms, but the principle 
may be easier to grasp as a simple autoregressive model 
predicting the signal from its past values (Fulop, 2011). For-
mants correspond to the delays at which the signal partially 
repeats itself as sound waves bounce back and forth in the 
vocal tract. At some wavelengths, constructive interference 
creates a resonance as the waveform and its echo align in 

phase. LPC finds the wavelengths at which constructive 
interference occurs (formant frequencies) and estimates the 
persistence of these echoes (formant bandwidths), wherein 
stronger and more long-lasting reflections correspond to 
formants with narrower bandwidths. A popular choice for 
performing LPC is Praat (Boersma, 2006), which provides 
both a graphical user interface and a scripting language for 
automatic batch processing of recordings. There are also 
Praat plugins intended to streamline formant analysis such 
as Fast Track (Barreda, 2021a). Praat returns estimates of 
the frequencies and bandwidths of individual formants, often 
F1 to F4. Working in R, LPC is implemented in the function 
findformants from the phonTools package (Barreda, 2015), 
and additional tools for vowel normalization are available in 
packages vowels (Kendall & Thomas, 2018) and soundgen 
(Anikin, 2019).

Unfortunately, the crucial first step of formant detection is 
error-prone because LPC estimates are biased towards strong 
harmonics, particularly when the fundamental frequency is 
high, and manual checks, if any, typically aim merely to 
exclude obviously incorrect measurements, rather than to 
correct this bias (Whalen et al., 2022). The level of accuracy 
of automatic LPC may be acceptable for many purposes in 
speech analysis, particularly when the algorithm is expertly 
fine-tuned and applied to carefully controlled stimuli such as 
steady vowels produced at low pitch and recorded in a noise-
free environment. Unfortunately, the problem of bias and 
outright noise in LPC output is greatly exacerbated when 
analyzing high-pitched and noisy vocalizations recorded 
in real-life settings. Despite the ongoing search for better 
alternatives, manual verification and correction of automatic 
formant measurements remains the most reliable option 
(Whalen et al., 2022). To facilitate this task, we propose a 
new open-source software solution, formant_app, which is 
now included in the R package soundgen (Anikin, 2019).

When called from RStudio (RStudio Team, 2022) or 
from the bash terminal, the R function formant_app() 
opens an interactive web application, which runs LPC and 
offers tools for annotating, checking, and adjusting formant 
measurements with visual and auditory feedback (Fig.1). 
It is designed for finding and annotating one or more suit-
able vowel-like regions in each recording, obtaining LPC 
estimates of average formant frequencies in each region, 
and correcting them as needed. The main functional dif-
ference from Praat and its plugins is the focus on assert-
ing the accuracy of average formant frequencies in each 
annotated region, rather than on exporting or correcting 
frame-by-frame formant tracks. This process is relatively 
fast and suitable for working with large datasets since a 
trained researcher can create and/or check about 100 anno-
tated regions (hereafter, tokens) per hour. A brief description 
of the main settings, tools, and output of formant_app are 
provided below.

https://osf.io/4c2r9/
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An essential, but commonly overlooked first step is to 
achieve a suitable visual representation of the analyzed sound 
by means of adjusting the spectrogram settings. This may 
seem too obvious to mention, but different tasks and differ-
ent types of recordings require very different spectrogram 
representations, so the default settings will not suit all pur-
poses; yet, manual verification is only as good as what we 
see (and hear – see below on auditory feedback). The con-
ventional approach in phonetics is to use very short analysis 
windows, about 5 or 10 ms, so as to mask the harmonics and 
preserve rapid formant transitions, which are abundant and 
informative in speech. When analyzing non-speech material 
or focusing on VTL, however, it may be preferable to use 
much longer windows so as to see the harmonics of the fun-
damental frequency and ensure that the LPC contours are not 
locked to them, which is a very common problem in high-
pitched vocalizations such as screams. Time- and frequency-
reassigned spectrograms are also a useful visualization tech-
nique for formant analysis as this spectral representation, also 

available in formant_app, uses not only the magnitude, but 
also the phase of complex FFT in order to improve the time-
frequency resolution (Fulop, 2011; Whalen et al., 2022). It 
may also be helpful to experiment with blurring or “unblur-
ring” (sharpening) the spectrogram in time and/or frequency 
and to adjust the contrast and brightness settings.

Users can load one or several audio files, play them, and 
annotate the regions of interest. The audio can also be loaded 
together with an already prepared table of annotations in a sin-
gle csv file (e.g., the output of an earlier session or a correctly 
formatted table with measurements from other sources such 
as Praat). For each annotated region, a new entry is added 
to the output table, which contains the start and end time, a 
manual label (which can be left blank), the frequencies of the 
first n formants, and the estimated VTL and formant spacing 
(dF). As explained in the next section, the principle behind 
these metrics is that, given a fixed articulation, proportional 
increases in the physical size of the vocal tract result in equal 
proportional increases in dF and estimated VTL.

Fig. 1   Software for verifying and adjusting LPC-based formant meas-
urements: soundgen::formant_app(). This free, open-source web 
application runs in browsers Mozilla Firefox or Google Chrome and 
can be accessed online (https://​cogsci.​shiny​apps.​io/​forma​nt_​app/) or 
locally by calling R function formant_app() from the soundgen pack-
age. The annotations can be made in the app and/or loaded in a csv 

file for checking together with the audio. The red dots and yellow 
text labels correspond to LPC estimates of formants F1 to F4 in the 
selected region, which can be verified visually and by listening to a 
synthetic vowel with the same formant frequencies, and then adjusted 
using the spectrogram or spectrum plot

https://cogsci.shinyapps.io/formant_app/
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The LPC analysis in formant_app is provided by the func-
tion findformants from R package phonTools (Barreda, 2015). 
The length of LPC window is independent of the FFT win-
dow length for plotting a spectrogram, but the principle is the 
same: a short window is preferable for tracking rapid formant 
transitions, while a long window is good for averaging out 
the noise in measurements and obtaining a robust long-term 
average value of each formant frequency. The number of 
LPC coefficients may be left blank, which defaults to two 
coefficients per kHz below the Nyquist frequency plus three 
extra coefficients, or set manually, which is particularly rec-
ommended for non-human vocalizations. Likewise, it may 
be necessary to adjust the minimum formant frequency and 
maximum formant bandwidth if working with sounds of 
animals much larger or smaller than humans – for example, 
elephant rumbles (Beeck et al., 2022). All these adjustments 
can improve the precision of automatic LPC considerably, but 
the main raison d’etre of formant_app is to facilitate manual 
correction of formant measurements.

There are four ways of doing this: having selected an anno-
tation and the formant of interest with one of the formant but-
tons in the top right corner (Fig. 1), the user can single-click 
the spectrogram within the selected annotated region, single-
click the spectrum of the selection, double-click the spectrum 
(in which case the formant frequency is set to the nearest 
spectral peak), or type in the new number in the text box 
within the formant button. Typing any non-numeric or empty 
string sets the formant to NA. In practice, it is most conveni-
ent to make adjustments using the spectrogram or spectrum, 
adjusting the amount of spectral smoothing with the provided 
slider. The panel underneath the spectrum provides other 
diagnostic plots: a speaker-normalized human vowel space 
based on Hillenbrand’s dataset (Hillenbrand et al., 1995) and 
the regression plots from the estimateVTL function. These 
plots are explained in detail in the next section.

Apart from the visual feedback provided by the spectro-
gram, spectrum, and diagnostic plots, it is helpful to hear 
the output – that is, to synthesize a sound with the measured 
formant frequencies and compare it to the original. Clicking 
the synthesis button in the top right corner of the app calls the 
soundgen function (Anikin, 2019), which creates and plays a 
synthetic vowel with the measured average formant frequen-
cies in the current annotation. If a gross error is made, the dif-
ference is usually obvious to the ear. Because the pitch of the 
synthesized sound is adjusted in proportion to the apparent 
VTL implied by measured formants, it also provides a quick 
sanity check: for example, if an extra formant is detected or 
if one is skipped, the unrealistic VTL causes the sound to be 
very different in pitch from the preceding ones. The orange 
export button loads the complete table of annotations to R 
and writes it to disk as a plain-text csv file, which can be 
re-used in a later annotating session or analyzed statistically.

Linear formants and VTL‑based speaker 
normalization

Once the formants are measured, it is time to see what their 
values tell us about the vocalizer’s vocal tract, especially its 
overall length (VTL) and articulatory configuration. Most peo-
ple working with audio are used to seeing spectrograms on a 
linear frequency scale, where formants above F3 are approxi-
mately equidistant, just like harmonics. Deviations of the first 
two or three formants from this regular spacing are responsible 
for what we hear as different vowels. For example, /a/ has a 
relatively high F1 and low F2, whereas /i/ has a relatively low 
F1 and high F2 (Fig. 2A). To keep our terminology consist-
ent, we refer to categories like /a/ and /i/ simply as vowels, and 
to continuous variation in formant patterns as vowel quality. 
Notably, the phenomenon is not restricted to speech: non-uni-
form formant patterns are also found outside human speech 
(Boë et al., 2017; Fitch et al., 2016), and they are also the result 
of articulatory changes in the shape of the vocal tract.

If the vocal tract is represented as a uniform tube closed at 
the larynx and open at the lips, it can be modeled as a quarter-
wave resonator with formants found at fixed intervals (i.e., 
every dF Hz) starting from dF/2, so that F1 = 0.5 dF, F2 = 
1.5dF, F3 = 2.5 dF, etc. If the vocal tract forms a closed-closed 
tube (i.e., closed at the glottis and at the mouth, as in a non-
nasalized mmm produced with a closed velopharyngeal pas-
sage) or an open-open tube (i.e., open at the glottis and mouth, 
as during relaxed breathing) and if we ignore the effects of 
nasalization, it becomes a half-wave resonator with the same 
formant spacing, but now F1 = dF, F2 = 2 dF, F3 = 3 dF, and 
so on (Johnson, 2011; Titze, 2000). Obviously, no vocal tract is 
perfectly cylindrical, and the reality is often much more com-
plicated because of articulation and the involvement of addi-
tional resonators such as the nasal cavity or air sacks (Beeck 
et al., 2022; Reby et al., 2016). Thus, a simple uniform-tube 
model often provides a reasonable first approximation to 
vocal tract resonances, but it is important to remember that 
the assumptions of this model become less and less tenable as 
the vocal tract deviates from a cylindrical shape.

Regardless of how the vocal tract is shaped, the average 
distance between formants, also known as formant spacing 
or dispersion (dF), is a linear function of VTL: a person with 
a 10% longer vocal tract in the same configuration will have 
formants that are 10% lower and 10% more closely spaced. 
Speakers have slightly different geometries of the vocal tract, 
so this scaling with VTL may not be precisely isometric 
(Fant, 1975), but most models assume that a single scaling 
constant suffices to describe the effect of VTL on all formants 
(Barreda, 2016; Barreda & Nearey, 2018; Turner et al., 2009), 
and uniform scaling may be a more appropriate model of 
human vowel perception (Barreda, 2021b). Of note, spread-
ing or rounding the lips, moving the larynx, and changing the 



Behavior Research Methods	

1 3

position of the tongue and mandible (Maeda & Laprie, 2013) 
may affect the VTL within speaker. Upper formants tend to 
be relatively more stable across vowels, and therefore consti-
tute more reliable predictors of vocal tract size (Lammert & 
Narayanan, 2015; Wakita, 1977), but they also shift around 
during articulating, just as F4 rises in /i/ compared to /a/ in 
Fig. 2A. Thus, three factors affect formant frequencies: (1) 
speaker-typical VTL, (2) articulatory changes in VTL caused 
by rounding or pulling back the lips and moving the larynx, 
and (3) other vowel-specific articulatory changes in the shape 
of the vocal tract caused primarily by tongue and jaw move-
ments. The first two factors affect all formants to various 
extents (e.g., lip rounding in humans lowers all resonances, 
but especially the resonance of the cavity in front of the 
tongue), while (3) primarily affects the lower two formants.

Because formants occur on average every dF in a single tube, 
dF can be estimated from the measured formant frequencies with 
simple averaging (Johnson, 2020) or linear regression (Reby & 
McComb, 2003) as long as the vocal tract is approximately cylin-
drical, as for central vowels such as the neutral schwa vowel /ə/. 
The regression method makes it straightforward to pool informa-
tion across many recordings because the model can include any 
number of formants and tokens; it also has the further advan-
tage of estimating both the most likely dF and its uncertainty. To 
diminish the influence of the highly variable lower formants on 
the estimated slope, the intercept can be set to zero, forcing the 
regression line to pass through origin. This modified regression 
method of VTL estimation was proposed by Reby and coauthors 
(Reby et al., 2005; Reby & McComb, 2003) and employed in 

many later studies (Belyk et al., 2022; Cartei et al., 2019). VTL 
is then calculated from dF as:

The resulting measure is often referred to as eVTL for “esti-
mated VTL”, but it might as well be called əVTL to emphasize 
its derivation from a single-tube, cylindrical model of the vocal 
tract and to distinguish it from the true anatomical VTL. A 
user-friendly implementation of this regression method is pro-
vided by the soundgen function estimateVTL, which accepts a 
vector of measured formant frequencies from a single token or 
a list of multiple formant frequencies from several tokens. Let 
us assume that we have measured formants F1 to F4 in 12 dif-
ferent vowels by the same speaker – for example, adult female 
“w_39” in the dataset by Hillenbrand et al. (1995) – and saved 
these values in a dataframe called speaker1:

vowel f1 f2 f3 f4
had 564 2442 NA 4038
cot 931 1348 2698 4540
hawed 752 1101 2616 3732
...etc. 12 vowels in total.

(1)VTL = speed of sound∕(2 × dF)

df = read.csv(‘..∕data∕hillenbrand_fmt.csv’,

stringsAsFactors = TRUE)

speaker1 = df
[

df$speaker == ‘w_39’,
]

head(speaker1)

Fig. 2   Estimation of vocal tract length from formants. A Conven-
tional representation of formants on a linear frequency scale in spec-
trograms of synthetic vowels /a/ and /i/ by two speakers with exagger-
atedly different VTLs: a female with apparent VTL of about 14 cm 
and a hypothetical very large man with a VTL of 21 cm (all formants 
scaled up by 50% compared to speaker 1). Note that, while the aver-
age formant spacing is smaller for speaker 2, the formant pattern is 
vowel-specific, although this fact is not visually obvious on a linear 
scale. The vowels were created with soundgen using noise as source 
and plotted with a 25-ms window and Gaussian blur of 75 ms in the 
time dimension to highlight the formants. B The output of the esti-

mateVTL function applied to 12 vowels by a female speaker. The 
slope of the dashed regression line corresponds to formant spacing 
dF, and the blue dotted line shows where formants would be if they 
were integer multiples of F1 (as a precaution against LPC tracking 
harmonics instead of formants). C The output of estimateVTL applied 
to a single recording of a closed-mouth mmm by a male speaker. The 
size of formant labels shows their influence on VTL estimates (e.g., 
F5 is disproportionately important here; F1 is missing). The regres-
sion lines pass through 0 in both (B) and (C), but X coordinates of the 
formants differ because the vocal tract is modeled as a closed-open 
tube in (B) and a closed-closed tube in (C)
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The eVTL of this speaker, averaging across all 12 vowels, 
can be calculated as follows:

Note that the point estimate of eVTL is the same 
whether we enter all 12 vowels individually or only the 
average frequency of each formant across these vowels, 
but its precision (estimated from the standard error in the 
linear regression model for dF as a function of observed 
formant frequencies) changes and becomes less meaning-
ful when averaging formant frequencies before the regres-
sion because we lose the information about the dispersion 
of each formant around the regression line. Compare:

estimateVTL(list
(

f1 = speaker1$f1, f2 = speaker1$f2,

f3 = speaker1$f3, f4 = speaker1$f4
)

,

tube = ‘closed − open’, output = ‘detailed’)

# eVTL = 15.2 cm, 95%CI [14.5, 16.0]
As before, the point estimate of eVTL is 15.2 cm, but the 

confidence interval is now different. As shown in Fig. 3B, 
the slope of regression line (dF) is estimated at 1162 Hz, 
which corresponds to a VTL of 15.2 cm according to Eq. (1). 
Missing values marked NA do not cause the entire token to 
be dropped because each formant value is used as an inde-
pendent point in the regression model. Likewise, eVTL can 
be calculated from a single token using any combination 
of measured and missing formants: the only requirement is 
that the index of each formant should be correct. Here is an 
example of a closed-mouth vocalization with unknown F1 
(Fig. 3C):

means = colMeans
(

speaker1
[

, c
(

‘f1’, ‘f2’, ‘f3’, ‘f4’
)]

,

na.rm = TRUE) # 567 1672 2789 4171

estimateVTL
(

means, tube = ‘closed − open’, output =‘ detailed’
)

# eVTL = 15.2 cm, 95%CI [14.7, 15.8]

Fig. 3   Speaker normalization based on eVTL. A The algorithm for 
calculating VTL-normalized formant frequencies as residuals from 
the regression line fit to observed formants in /i/ by an adult female. 
F2 is 0.48 dF units above the regression line, so normalized F2 = 
0.48. B The original formant frequencies per token in (Hillenbrand 
et  al., 1995). There is a lot of overlap between vowels, and vowel 
clusters are not clearly defined because the sample includes men, 

women, and children. C Vowels form more compact clusters in the 
space of VTL-normalized formants. The point (0, 0) corresponds to 
equidistant formants, as in a cylindrical tube or central vowels such 
as the schwa /ә/. D eVTL is primarily driven by upper formants: scat-
terplots and Pearson’s correlations (with 95% CI) between eVTL 
values calculated from a single token with different combinations of 
formants measured
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their variance decreases from lower to upper formants because 
higher formants are more closely spaced on a logarithmic 
frequency scale. In contrast, residuals expressed in dF units 
are independent of both formant index and the overall scale 
– thus, multiplying all formants by the same scale factor has 
no effect on the normalized formant frequencies. As a result, 
the clusters corresponding to different vowels spoken by chil-
dren, women, and men in Hillenbrand’s dataset become visu-
ally more compact after eVTL normalization compared to 
the original measurements in Hz (Fig. 3B, C), which will be 
proven more formally when we compare different methods of 
vowel normalization below. Likewise, deviations from equal 
spacing in dF units can be used to normalize formant frequen-
cies in open-mouth vocalizations of animals of any size, from 
kittens to elephants, making it possible to project them onto 
the same vocal-tract normalized space. Moreover, the result-
ing space can be directly juxtaposed with the familiar space 
of human vowels for comparison, as in the diagnostic plot of 
vowel space in formant_app (Fig. 1).

A convenient way to calculate VTL-normalized formant 
frequencies is to call the function schwa() from the soundgen 
package. For example, the vowel /i/ in Fig. 3A can be nor-
malized by running:

This returns the estimated dF (1291 Hz), eVTL (13.7 cm), 
predicted frequencies of F1–F4 in a schwa vowel for this eVTL, 
and the deviation of each measured formant from the schwa 
(– 0.16, 0.48, – 0.09, and – 0.11 dF units for F1–F4, respec-
tively), together with a plot of normalized vowel centroids from 
Hillenbrand’s dataset as a visual reference framework. Thus, we 
see that F1 is relatively low in /i/, whereas F2 is high relative 
to where it would be in a cylindrical vocal tract of the same 
length as the eVTL estimated from these formant frequencies. 
To normalize all formants in dataframe df, we call the schwa 
function for every row, just as we did with estimateVTL:

As mentioned above, the regression method of VTL esti-
mation and algorithmic normalization can handle missing 
values: the regression line can be fit using any number and 
combination of formant frequencies as long as each meas-
ured value is assigned to the correct formant index. Missing 
values do not need to be excluded before executing the code 
above, although the corresponding normalized values will 

schwa(c(436, 2559, 3104, 4375), plot = TRUE)

for (i in 1:nrow(df)) {

schwa_i = schwa
(

as.numeric
(

df
[

i, c
(

‘f1’, ‘f2’, ‘f3’, ‘f4’
)]))

df
[

i, c
(

‘f1rel’, ‘f2rel’, ‘f3rel’, ‘f4rel’
)]

=

schwa_i$ff_relative_dF

# we can also save VTL here, without having

# to call estimateVTL()

df$vtl[i] = schwa_i$vtl_apparent

}

An alternative is to relax the assumptions of the model and 
evaluate both slope and intercept. For example, we can omit 
the missing F1 in the example above and not set the intercept 
to zero (the tube argument is removed because it makes no 
difference in models that do not set the intercept to zero):

Note that we can only drop leading NAs: we still need to 
make sure we do not miss a formant in the middle: for exam-
ple, we cannot omit the NA in “c(1800, NA, 2400)”, otherwise 
the estimated formant spacing will be incorrect. Furthermore, 
not setting the intercept to zero makes eVTL more sensitive 
to vowel-specific variation in the lower formants. In general, 
it is thus preferable to use the correct formant indices without 
omitting the NAs and to set the intercept to zero for the most 
accurate VTL estimates. To calculate eVTL for each token 
– each row in dataframe df similar to the dataset speaker1 
shown above – we call estimateVTL for each row:

Alternatively, if we need a single eVTL estimate per 
speaker, we set up a dataframe with speaker names and call 
estimateVTL once per speaker:

A nice bonus feature of the regression method of VTL 
estimation is that dF-normalized residuals – distances from 
the observed formants to the regression line – provide a scale-
invariant measure of the formant pattern (or vowel quality, in 
the case of human speech). In a perfectly cylindrical vocal 
tract, each formant should fall exactly on the regression line, 
which approximately corresponds to central vowels such as 
the schwa /ә/. In reality, the observed formants tend to deviate 
from equal spacing, and thus from the regression line. The 
residual of each formant, normalized by dividing it by formant 
spacing dF, gives relative formant frequencies relative to the 
resonances of a uniform tube of the same length (Fig. 3A). 
The residuals can also be expressed in semitones, but then 

estimateVTL(c(NA, 1800, 2400, 3800, 5500),

tube = ‘closed − closed’
)

# 17.9 cm

estimateVTL(c(1800, 2400, 3800, 5500),

interceptZero = FALSE) # 14.2 cm

for (i in 1:nrow(df)) df$vtl[i] = estimateVTL(

as.numeric
(

df
[

i, c
(

‘f1’, ‘f2’, ‘f3’, ‘f4’
)]))

sp = data.frame
(

speaker = unique
(

df$speaker
))

for (i in 1:nrow(sp)) {

# subset the dataframe, selecting one power

temp = df
[

df$speaker == sp$speaker[i],
]

# estimate VTL for this speaker

sp$vtl[i] = estimateVTL
(

list
(

f1 = temp$f1,

f2 = temp$f2, f3 = temp$f3, f4 = temp$f4
))

}
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likewise be missing (NA). Moreover, different combinations 
of formants (F1 to F3, F3 and F5, etc.) can be measured in 
different recordings pooled to provide a single estimate of 
the speaker-typical eVTL. An important special case is sys-
tematic omission of some formants. For example, sometimes 
it is impossible to measure formants F1 and F2 because of 
background noise or high fundamental frequency; on other 
occasions, upper formants may be invisible because the sig-
nal is weak, the voice is breathy and quiet, or the sampling 
rate is too low to encode high-frequency formants, as in old 
recordings. As shown in Fig. 3D, eVTL estimated with the 
intercept fixed at zero is barely affected by F1, and even 
only F3 and F4 produce VTL estimates that are correlated 
with estimates from F1–F4 with Pearson’s r = .97. Thus, 
if the VTL is the measure of interest and F1–F2 cannot be 
measured reliably, we can safely treat them as missing and 
still estimate eVTL from a few upper formants. In contrast, 
using only the lower formants, especially just the first two, 
produces highly unstable eVTL estimates (Fig. 3D).

In sum, the method of estimating the apparent VTL from 
regression-derived formant spacing dF provides a simple and 
intuitive metric of the overall vocal tract size, while dF-nor-
malized residuals constitute a scale-invariant measure of vowel 
quality. Unfortunately, as noted above, this method is limited 
by the often unrealistic assumption that the vocal tract is nearly 
cylindrical. In actual fact, many human vowels are articulated 
with tongue positions that fundamentally violate the assump-
tions of a uniform-tube model (Johnson, 2011). Therefore, it is 
crucial to emphasize that eVTL is not the same as anatomical 
VTL, and it is most meaningful to compare eVTL in vocali-
zations that have either schwa-like or at least the same vowel 
quality (or the same set of vowel qualities). For example, we 
can compare eVTL in two /a/-like vocalizations by the same or 
two different individuals, but we cannot meaningfully compare 
vocal tract length based on eVTL in two different vowels.

Logarithmic formants and speaker 
normalization by transposition

It is convenient to represent human formants on a linear fre-
quency scale when the focus is on voice production because 
vocal tract resonances occur approximately every dF Hz. 
However, our auditory perception is approximately logarith-
mic in the relevant frequency range (Fastl & Zwicker, 2006). 
Furthermore, the invariance in formant ratios between 
speakers saying the same vowel becomes more obvious if 
these ratios are log-transformed – that is, if we convert ratios 
to musical intervals. Using base-two logarithms, we obtain 
the conventional musical scale of octaves or semitones; for 
instance, if F1 = 500 Hz and F2 = 1500 Hz, they form an 
interval of 19 semitones, or an octave and pure fifth:

If we then take log-ratios of F2 to F1, F3 to F2, F4 to F3, 
and so on, each vowel is transformed into a musical chord 
composed of formants instead of notes (Fig. 4A). Intervals 
between formants can also be expressed in quasi-logarithmic 
perceptual units such as mels or barks instead of semitones 
(Syrdal & Gopal, 1986). The key insight is that the chord 
formed by each vowel is very similar across speakers, regard-
less of the size of their vocal tracts. This is known as the ‘uni-
form scaling’ or ‘constant ratio’ hypothesis, and it is a very 
old observation, first published in late 19th century and then 
repeatedly proposed with slight variations by new genera-
tions of researchers (Johnson & Sjerps, 2021; Miller, 1989). 
When formants are reconceptualized as musical chords, it is 
immediately obvious how they might be normalized across 
speakers: all we need to do is shift, or transpose, the chords 
to some standard reference point (Fig. 4B). For instance, we 
can subtract the average log-frequency, which is mathemati-
cally equivalent to dividing each formant Fn on the linear 
scale (Hz) by the geometric mean of all measured formants. 
For instance, working with formants F1 to F4:

This method is known in phonetics as log-mean (or Nearey) 
normalization (Nearey, 1978) or the sliding-template model 
(Nearey & Assmann, 2007). An R implementation is avail-
able in the function normalize from the phonTools package 
(Barreda, 2015). Transposing formant patterns does not add 
any new information about the vowel. However, if we are 
also interested in the size of the vocal tract, the mean log-
formant provides a ready-made scale metric. Simply put, 
the musical chord created by the formants depends on the 
shape of the vocal tract and thus encodes the vowel, while 
the chord’s location along the frequency scale (analogous to 
a piano keyboard) depends on the length of the vocal tract 
and thus conveys some information about the speaker’s size 
(Turner et al., 2009).

Linear normalization with estimateVTL converts any num-
ber of formants, and any combination of missing and meas-
ured values, to the same metric of eVTL measured in cm. In 
contrast, the mean log-frequency requires that the same num-
ber of formants be measured in all tokens, with no missing 

(2)

log2(F2∕F1) = log2(F2) − log2(F1) = log2(1500) − log2(500)

∼= 1.58 octaves, or 1.58 × 12 = 19 semitones

(3)

log2(geometric mean) = log2
(

(F1 × F2 × F3 × F4)1∕4
)

(log2(F1) + log2(F2) + log2(F3) + log2(F4))∕4

= mean(log − formant)

(4)

���2
(

Fn∕geometric mean
)

= log2
(

Fn

)

–log2(geometric mean)

= log2
(

Fn

)

–mean(log − formant)
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values, otherwise scale estimates will not be commensurate 
across tokens. Fortunately, this limitation can be overcome 
by using a statistical approach if multiple tokens are recorded 
per speaker: each measured formant frequency can be mod-
eled as a function of formant index, vowel, experimental 
condition, and other relevant predictors, including speaker-
specific scale constants, as suggested by Barreda and Nearey 
(2018). Their regression approach can be updated to take 
advantage of the flexibility and rich information provided by 
multilevel Bayesian models. For instance, consider the situ-
ation where we are interested in estimating a speaker-specific 
scaling factor (let us call it k) in Hillenbrand’s dataset. We 
fit a multilevel Bayesian model predicting log-transformed 
formant frequency using the brms package in R (Bürkner, 
2017). Assuming the data is in the ‘long’ format (one row = 
one formant), model K1 can be written as:

The first line of this formula specifies that the measured 
log-frequency depends on formant number (main effect of 

mod _K1 = brm(bf(

log _frequency ∼ formant_index

+vowel + formant_index ∶ vowel + (1|speaker),

sigma ∼ formant_index),…)

formant_index), overall vowel-specific scale factor (main effect 
of vowel), and an interaction between these two variables, which 
means that different formants can shift around independently in 
different vowels. The second line specifies that each log-formant 
can have a different standard deviation, which is clearly the case 
both on a linear scale (because the lower formants are much 
more variable than the upper ones, at least in human vowels) and 
even more so on a logarithmic scale (because upper formants 
are increasingly closely spaced). This may seem like a trivial 
point, but the omission of this part can have a dramatic effect 
on results: as demonstrated in the example in supplements (sce-
nario2.html), a model with the same SD for all formants makes 
predictions very similar to mean log-frequency, whereas a model 
with different SDs puts more weight on the less variable upper 
formants, behaving more similarly to eVTL.

The main measure of interest in model K1 is each speaker’s 
‘random’ intercept, or scale factor k, which shows how much 
higher or lower formant log-frequency is on average (across all 
tokens, formants, and vowels) in a specific person compared 
to the average person in the sample. The unit of k is binary-
logarithmic, so a k of 1 means that a speaker has formants 
twice as high in frequency as the population average. Missing 
values of some formants do not require dropping the entire 

Fig. 4   Representations of formants on a logarithmic frequency scale. 
A Formants as musical chords: 12 vowels by an average adult man 
in Hillenbrand’s dataset shown as musical chords, where each note 
corresponds to a formant (transposed down by one octave). B Vowels 
/ɑ/ and /i:/ by an average adult man and child, with formants shown 
as notes on a piano keyboard (an octave consists of 12 notes sepa-
rated by one semitone). The highlighted notes correspond to formants 
F1 to F4, with the interval between them marked in semitones. The 

children’s formants are transposed up by 4 or 5 semitones compared 
to adult men, but the intervals between formants are nearly identi-
cal. C Formants as bar codes: log-formants form distinct, vowel-
dependent but VTL-invariant patterns. Note that this is only the case 
if we assume that all formants scale uniformly with VTL, and only 
on a logarithmic scale because the spacing between adjacent formants 
measured in Hz varies with VTL
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token because the unit of analysis is a single formant (Barreda 
& Nearey, 2018). For ease of interpretation, k can be converted 
into a measure of relative VTL, which we refer to as kVTL, by 
taking some reference VTL value (e.g., 17 cm or, more mean-
ingfully, the mean eVTL in our sample) and dividing it by 2^k:

Thus, for each grouping level (vowel, speaker, condi-
tion, etc.), kVTL can be calculated from the corresponding 
scale factor k in relation to some standard reference value. 
It must be emphasized that, although kVTL is measured in 
centimeters, it is not an absolute anatomical measure but 
merely a projection of k onto a more intuitive scale. Like-
wise, the formant frequencies themselves are commonly 
normalized by dividing them by some scale normalization 
factor. For instance, if we use mean log-formant as our 
measure of scale, its sample mean provides a reference 
point for normalizing formant frequencies, as follows:

The difference from the schwa normalization in Fig. 4 is 
that we preserve the natural scale: formant frequencies are still 
expressed in Hz, but now they are normalized to remove variation 
in overall scale between speakers – in this case, the log-formant of 
each token becomes equal to the global mean log-formant. Like-
wise, observed formants in each vowel can be normalized by k:

To conclude this brief introduction to the technique of using 
mixed models to model scale factor k, its crucial statistical advan-
tage is that the effect of interest (e.g., differences in VTL between 
vowels or experimental conditions) can be modeled directly, 
producing realistic confidence intervals. In contrast, raw mean 
log-formant cannot deal with missing formant values, while esti-
mating eVTL first and then comparing it across vowels or condi-
tions typically fails to take into account the uncertainty in eVTL 
itself, which is in fact only a point-estimate of a model parameter 
inferred with some uncertainty. Despite these advantages of the 
proposed modeling method, it is important to remember that 
there is currently no silver-bullet model that would produce accu-
rate estimates of the true anatomical VTL from a single vocaliza-
tion of an unknown vowel using formant frequencies alone. We 
discuss what makes this task so challenging in the next section.

df$kVTL = mean
(

df$vtl
)

∕
(

2̂df$k
)

correction = 2̂df$mean_logF∕2̂mean
(

df$mean_logF
)

df
[

, c
(

‘F1’, ‘F2’, ‘F3’, ‘F4’
)]

=

df
[

, c
(

‘F1’, ‘F2’, ‘F3’, ‘F4’
)]

∕correction

# normalized formants in Hz

correction = 2̂df$k

# technically, 2̂
(

df$k–mean
(

df$k
))

,

# but the mean of k approaches 0

df
[

, c
(

‘F1‘, ‘F2‘, ‘F3‘, ‘F4‘
)]

=

df
[

, c
(

‘F1‘, ‘F2‘, ‘F3‘, ‘F4‘
)]

∕correction

# normalized formants in Hz

A comparison of methods for estimating VTL

To sum up the discussion so far, two pieces of information 
are available from measured formant frequencies. One is 
the acoustically estimated or “apparent” VTL (an approxi-
mation of the anatomical VTL), which is a function of the 
average spacing between formants on a linear scale, or of 
their average location on a logarithmic scale. The other is 
the formant pattern, perceived as vowel quality in sounds 
resembling human vowels, which depends on the ratios or 
musical intervals between the first two or three formants.

Formant analysis would be much easier if formant pat-
terns and VTL were fully independent, but they are not. As 
already mentioned, articulatory movements can lengthen 
or shorten the vocal tract, so that a person saying /u/ may 
have a longer vocal tract (and a different scaling constant 
calculated from this one recording) compared to the same 
person saying /i/. Furthermore, in the absence of detectable 
higher formants the task of estimating both size and vowel 
quality suffers from circularity because each one depends 
on the other: the same absolute frequencies of F1 and F2 
can correspond to different vowels depending on VTL, and 
different VTLs can be inferred depending on which vowel 
is perceived (Barreda, 2020). The same absolute formant 
frequencies can also result from a variety of vocal tract con-
figurations and lengths (Atal et al., 1978). Thus, an observed 
pattern of formant frequencies may be compatible not with 
one, but with a whole range of VTLs, depending on the 
speaker’s vocal tract anatomy and manner of articulation.

The estimation of both VTL and vowel quality can improve 
dramatically if we have several vowels from the same speaker 
(Johnson & Sjerps, 2021), as opposed to estimates based on a 
single category. Using information extrinsic (i.e., external) to 
a particular analyzed token is known as extrinsic normaliza-
tion, and it results in what we will call ‘multiple’ estimates 
of VTL. These can be contrasted with ‘single-shot’ estimates 
based only on the information intrinsic to each token.

Keeping this distinction in mind, we can compare the 
performance of different normalization algorithms discussed 
above and evaluate the validity of different VTL estimates, 
of which we have discussed three: one-shot or multiple 
eVTL, one-shot or multiple mean log-formant, and multi-
ple scale factor k estimated with mixed model K1. Unfortu-
nately, the ground truth of anatomical VTL is not available 
for Hillenbrand’s or other comparable datasets, and there are 
apparently no suitable banks of recordings with anatomical 
measurements of actual VTL as well as formant frequen-
cies. Imaging techniques (magnetic resonance or X-ray) 
were used in several studies to study within-subject changes 
in anatomical VTL during speech, but with too few speak-
ers (Lammert & Narayanan, 2015; Maeda & Laprie, 2013) 
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and usually without recording any audio (Belyk et al., 2022; 
Fitch & Giedd, 1999; Kim et al., 2020).

In the absence of anatomical measurements, we can only 
observe that all three multiple estimates of apparent VTL per 
speaker, which take into account up to 12 vowels from each 
speaker in Hillenbrand’s dataset, are quite similar: the scale 
factors that they predict correlate with Pearson’s r = .96 to .97 
if we average across men, women, boys, and girls (Fig. 5A). 
Despite some differences between the algorithms, particularly 
when modeling the vocal tract of adult males, there is good 
agreement across the full range of human VTL values. Thus, 
in practice it should not matter very much which algorithm is 
used – as long as each speaker provides several vowels and the 
goal is to estimate speaker-specific VTL in relation to other 
speakers, not the anatomical ground truth.

Apart from speaker-specific VTL, model K1 can be used 
to calculate estimates of vowel-specific k (Fig. 5B). In other 
words, once we have accounted for differences in VTL 
between speakers and articulatory effects on the relative 
positions of each formant, for each vowel there remains a 
change in apparent VTL, which can be calculated as the main 
effect of vowel averaging across all formants (alternatively, 
we could focus only on the more stable upper formants; see 
supplementary code model_K1.html for implementation 
details). It is interesting to compare these estimates of the 
‘size’ of different vowels derived from eVTL and mean log-
formant methods. To do so, we can estimate the mean log-
formant or eVTL per recording, then per speaker (averaging 
across all 12 vowels), and take the difference between them. 
Likewise, kVTL estimates per vowel can be extracted as the 
main effect of vowel from model K1.

As shown in Fig. 5B, kVTL residuals per vowel are nearly 
identical to mean log-frequency residuals, while eVTL esti-
mates are somewhat different (r = .87). The most noticeable 
difference is that the low F3 in /ɝ/ makes its eVTL nearly 2 
cm greater than that of /u/, whereas kVTL is slightly larger 
in /u/ than in /ɝ/. Thus, while all methods find systematic 
differences in VTL across vowels, the results are far from 
identical and difficult to verify in the absence of anatomical 
data, requiring validation in future studies. In general, when 
VTL is estimated using a single method and with similar 
ranges of vowel quality across all subjects (e.g., the same 
phrase or the same range of vowels), proportional differences 
in VTL estimates should relate to proportional differences 
in VTL between speakers. However, when these conditions 
are not met, the relationship between VTL estimates and 
actual VTL is substantially opaquer. Therefore, researchers 
are advised to be very cautious when interpreting differences 
in apparent VTL (regardless of how it is calculated) between 
animal or human vocalizations of variable vowel quality.

Given the considerable variation in apparent VTL 
across vowels, it is clearly preferable to record and 
analyze several different vowels if the anatomical 

relaxed-configuration VTL of a particular speaker is the 
measure of interest. Indeed, one-shot estimates of eVTL 
and mean log-formant correlate with kVTL with Pearson’s 
r = .70 and .62, respectively, which is quite a drop from 
r = .97 between kVTL and multiple eVTL estimates. In 
other words, the reproducibility of speaker-typical VTL 
estimates drops dramatically when only a single vowel is 
available, and it seems unlikely that the variation in eVTL 
across vowels precisely corresponds to the true changes in 
anatomical VTL as the same speaker pronounces differ-
ent vowels. Of course, human nonverbal vocalizations and 
animal calls do not correspond to different vowels and tend 
to be schwa-like, so the variation of eVTL across vowels 
may be less of a problem outside speech, but this remains 
to be shown experimentally.

Finally, VTL is often of interest not for its own sake, 
but as a proxy measure for actual or perceived speaker size. 
Several commonly used summary measures, such as F4, 
mean formant, mean log-formant, and eVTL, are reported 
to be comparable predictors of actual speaker height, with 
the absolute value of Pearson’s correlations with height 
between .25 and .32 (Pisanski et al., 2014; Pisanski et al., 
2016a). eVTL produced the highest correlation in the meta-
analysis by Pisanski et al. (2014), and it has the advantage 
of being theoretically informed and linked to the constraints 
on voice production, so it is presumably a good choice if 
the actual anatomy of the vocal tract is of interest, but only 
as long as the recorded vowels or vocalizations are reason-
ably schwa-like. In future work, it will be interesting to test 
whether VTL estimates based on several tokens of different 
vowels offer a noticeable advantage over the traditionally 
used one-shot measures (Pisanski et al., 2014) for predicting 
speaker height.

How about the perceived, rather than actual, speaker 
size? It is well established that low and closely spaced 
formants create a powerful impression that the speaker 
is large (Barreda, 2016; Pisanski & Bryant, 2019), even 
though eVTL explains less than 10% of variance in actual 
height of adult humans (Pisanski et al., 2014). To dem-
onstrate how well different acoustic estimates of VTL 
predict perceived speaker size, we re-analyzed the data 
from Barreda (2017a). In this study, consonant-vowel-
consonant words with five different vowels were recorded 
as spoken by ten female speakers and then used in a per-
ceptual rating study with the original or linearly scaled 
formants. The first six formants were measured (F1–F6). 
One-shot eVTL and mean log-formant correlated with 
perceived speaker height with Pearson’s r = 0.27 [0.25, 
0.30] and 0.27 [0.24, 0.29], respectively. Crucially, scale 
estimates calculated from several tokens were much 
better predictors of perceived height: r = 0.36 [0.34, 
0.38] for multiple eVTL, 0.41 [0.39, 0.44] for multiple 
mean log-formant, and 0.41 [0.39, 0.43] for k. The exact 
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correlations are not so important – for example, in another 
dataset multiple eVTL came out on top as the best predic-
tor of perceived vocal formidability (see supplements, 
scenario3.html). The key result here is that apparent VTL 
calculated from several tokens is consistently a much 
better predictor of perceived speaker size compared to 
estimates derived from a single token. It is as if human 
listeners perform vowel-adjusted size normalization from 
a single token, presumably by leveraging their extensive 
previous exposure to human speech (Turner et al., 2009; 
see Barreda, 2020 for an exploration of how this might 
work in perception).

How might we approximate this one-shot vowel adjust-
ment performed by human listeners? One possibility is to 
categorize the vowel, assuming it is not known a priori 
(for example, from formant ratios), and then subtract the 
residual per vowel shown in Fig. 5B. For instance, if eVTL 
in a particular token is 15 cm and the vowel (based on 
formant ratios) is /i:/ as in /heed/, we add 1.8 cm to this 
eVTL, but if the vowel is / ɝ/, we subtract 2.7 cm. Barreda 
(2017a) reports that this simple correction results in ‘one 
shot’ estimates of average log-frequency that have a cor-
relation of .81 with those obtained using the complete 

set of vowels. Nearey and Assmann (2007) also present 
a method that ‘guesses’ the vowel category and uses this 
to predict vowel quality and VTL with a high degree of 
accuracy using information from a single vowel token. Of 
course, these methods are only applicable when there is a 
closed set of possible sound categories to choose from, so 
they are not directly applicable to the general case where 
phonetic content, or the formant pattern more generally, 
may vary arbitrarily between speakers.

To conclude, listeners make some allowance for per-
ceived vowel when asked to judge the size of speakers 
from a single token. This ability is not absolute: listeners 
still judge a speaker to be taller when they say /u/ rather 
than /ɑ/ (Barreda, 2017b). However, even this partial 
compensation for vowel is not easily matched by models 
that do not have access to several different vowels from 
the same speaker. In future it will be important to find a 
computational approach that better approximates human 
performance; for now, the bottom line is that it is advisable 
to obtain several vowels per speaker, or else to keep vowel 
quality or verbal content consistent across experimental 
conditions because it is very difficult to derive accurate 
estimates of speaker-typical VTL from a single vowel or 

Fig. 5   A comparison of scale estimates by three methods. Scatter-
plots and Pearson’s correlations between kVTL, eVTL, and mean 
log-formant frequency calculated (A) per speaker relative to mean 

eVTL and (B) per vowel relative to the mean across vowels in Hillen-
brand et al. (1995). Error bars show 95% CIs around the estimate for 
each vowel
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to compare VTL across speakers and conditions when 
vowel quality is not controlled (see scenario2.html in sup-
plements for an example). Provided that multiple vowels 
are recorded from each individual or that vowel quality is 
comparable across recordings, differences in VTL between 
individuals or experimental conditions can be captured 
using eVTL, mean log-formant, or scale factor k; all three 
methods should produce similar results.

A comparison of methods for estimating 
vowel quality

Having compared the performance of different algorithms 
for estimating the length of a speaker’s vocal tract from 
formant frequencies, we now consider another aspect of 
speaker normalization, namely the extraction of scale-invar-
iant formant patterns. The metric we use for this compari-
son is the degree of separation between different vowels in 
Hillenbrand’s set under different types of speaker normali-
zation (Fig. 6), but the same principles apply when analyz-
ing formant patterns in animals of greatly varying size such 
as adult males compared to infants of the same species. 
Johnson and Sjerps (2021) performed a similar compari-
son on a broader range of normalization methods and four 
datasets, obtaining the best results for extrinsic methods. 
We modified their procedure to make it more relevant to 
non-phonetic applications. First, for cross-species research 
it is crucial to test how well different normalization methods 
generalize beyond the VTL range in the training sample, 

which is here investigated by training a classifier on chil-
dren’s voices in Hillenbrand’s dataset and testing it on adult 
men; the VTL ranges do not overlap at all between these 
groups (see model_K1.html). Second, to simulate research 
contexts in which it is not possible to measure upper for-
mants (i.e., in quiet or noisy recordings), we also tested the 
performance of each algorithm when only some formants 
were available, namely F1–F2, F1–F3, or F1–F4. In addition 
to vowel classification accuracy in a supervised context, the 
performance was evaluated based on unsupervised cluster-
ing with k-means. There are many sophisticated metrics of 
clustering quality (Vinh et al., 2009), but in this case it can 
be expressed simply as the proportion of vowels that are 
assigned to the correct (majority-based) cluster, which we 
refer to as ‘cluster purity’, because the number of clusters 
is equal to the number of vowels.

Using intrinsic speaker normalization – that is, treating 
each token as if it were the only recording from each indi-
vidual (dashed lines in Fig. 6) – the greatest improvement 
in both cluster purity and vowel classification accuracy is 
achieved by increasing the number of measured formants. 
F1 and F2 are not sufficient because the same F1–F2 com-
binations can correspond to different vowels depending on 
the (unknown) VTL. Interestingly, there is essentially no 
difference between raw and intrinsically normalized for-
mant frequencies in terms of how well vowels can be rec-
ognized when working with the entire dataset and having 
F1–F3 or F1–F4 (dashed lines in Fig. 6B), as also reported 
by Johnson and Sjerps (2021). Observe, however, that raw 
formant frequencies are largely useless when training the 

Fig. 6   The effectiveness of vowel separation with different methods 
of formant normalization. A The purity of k-means clustering and B 
balanced accuracy (the average rate of true positives across the 12 
vowels in Hillenbrand’s dataset) with Bayesian multi-logistic regres-
sion, either within the entire sample or C when training the model 
on children and testing it on adult men. The greatest improvement is 
achieved when also measuring upper formants (at least F3) and/or 

using token-extrinsic information. Raw = log-formants; log-ratios = 
musical intervals between consecutive formants; mean log-formant 
= subtract average of log-F1–F4; eVTL = calculate deviation from 
estimated neutral position with the schwa function; k = subtract scale 
factor per speaker estimated with mixed model K1. Intrinsic = using 
only a single token; extrinsic = using multiple token with different 
vowels from the same speaker. Error bars correspond to 95% CIs
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model on children’s voices and then attempting to identify 
vowels spoken by adult men (Fig. 6C). In contrast, normal-
ized measures show good transfer, only slipping a few per-
centage points when trained and tested within completely 
different VTL ranges. Interestingly, logarithmic methods 
for intrinsic normalization (formant log-ratios and mean 
log-formants) are somewhat better than intrinsic eVTL 
for vowel separation when extrapolating beyond the VTL 
range in the training sample.

Extrinsic speaker normalization – that is, pooling the 
information across multiple tokens per speaker, here up to 12 
recorded vowels – leads to a noticeable improvement in vowel 
separation and classification (solid lines in Fig. 6). Multiple 
mean log-formant, eVTL, and k all produce very similar clus-
tering quality and classification accuracy. Remarkably, and 
in marked contrast to intrinsic normalization, performance 
does not suffer much even when only F1 and F2 are meas-
ured. Overall, however, the availability of several recordings 
per speaker is not as essential for estimating VTL-normalized 
vowel quality as it is for estimating the actual or perceived 
speaker-typical VTL itself – provided that we also measure 
one or two higher formants in addition to F1–F2. Indeed, 
intrinsic normalization with any of the described methods 
should be precise enough for most purposes when it relies on 
all formants up to F4 or above.

Sample applications

In this section we present several examples of research 
tasks in which the described algorithms can be used. The 
corresponding datasets and documented R code for each 
example are provided in the supplements, and here we 
merely highlight the main considerations that dictate the 
choice of analytic approach. The first step is always to 
locate relatively stable vowel-like regions in the recordings 
and measure average formants F1–F4 within each region. 
In this case, we used formant_app for manually correct-
ing LPC estimates, as needed, and simply excluded all 
recordings that were too high-pitched or noisy to measure 
the formants reliably. While these particular recordings 
are by humans who were instructed to convey different 
attitudes, vowel as a category is not used in any of the 
analyses, and precisely the same approach can be applied 
to animal vocalizations recorded in different contexts (e.g., 
agonistic vs. affiliative).

Scenario 1  Speakers were asked to sound either intimidating 
(large / strong / aggressive) or small / weak / submissive in 
different experimental conditions, and we are interested in 
whether speakers produce different formant patterns (vow-
els) depending on the condition.

Proposed solution (scenario1.html). Since we have 
several recordings per speaker, we could perform extrinsic 
normalization by speaker-typical eVTL or mean log-for-
mants from all available recordings from the same speaker. 
However, considering the very limited improvement over 
intrinsic normalization (Fig. 6B), we might as well simply 
analyze log-ratios (musical intervals) between formants or, 
for a more familiar and interpretable representation of the 
vowel space, calculate VTL-normalized formant frequen-
cies using the schwa function. In this case, speakers trying 
to intimidate produced more open vowels, as indicated by 
the increase in speaker-normalized F1, which is presum-
ably related to an attempt to vocalize more loudly.

Scenario 2  In the same experiment, we want to check 
whether speakers elongate their vocal tracts to intimidate.

Proposed solution (scenario2.html). As we estab-
lished above, different vowels are produced in different 
conditions, which immediately raises a red flag as any 
estimates of apparent VTL become suspect when the 
vowel quality is not controlled. To demonstrate that this 
is a very real concern, in this example we estimated differ-
ences in apparent VTL between experimental conditions 
using a wide variety of methods: single-shot or multiple 
eVTL and mean log-formant, model K1, and two more 
complex mixed models with k as a latent variable (model 
K2), including one that attempts to statistically correct 
for vowel quality when estimating scale factor k. All of 
these models agree that speakers shorten their vocal tract 
relative to baseline when they try to sound small / weak 
/ submissive. However, eVTL estimates predict vocal 
tract elongation when speakers try to sound large / strong 
/ aggressive relative to baseline, mean log-formant esti-
mates predict vocal tract shortening, while mixed models 
K1 and K2 make predictions intermediate between these 
two extremes. The basic source of this mismatch is the 
different weighting of lower and upper formants: eVTL 
and related methods are less sensitive to vowel-related 
variation in formants F1 and F2. Even so, none of them 
are guaranteed to approximate true anatomical changes in 
VTL because any change in apparent VTL between condi-
tions may be partly due to changes in formant patterns.

Scenario 3  We are interested in how formant frequencies are 
related to listeners’ ratings of formidability in a perceptual 
experiment.

Proposed solution (scenario3.html). Both vocal tract 
elongation and changing formant patterns might contrib-
ute to conveying formidability, so we begin by estimating 
both, as in Scenarios 1 and 2. In this case, formidability is 
predicted by higher normalized F1 (an open vowel qual-
ity) and by all VTL measures, but especially by speaker-
typical eVTL averaged across all produced tokens. Once 
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again, this result confirms that listeners make allowance 
for vowel quality when judging speaker size from a single 
token, and the easiest way to model human performance 
is to “cheat” by using extrinsic normalization – that is, to 
pool information across multiple tokens and different vow-
els recorded from the same speaker. Which VTL measure 
is reported is a matter of personal preference and data 
availability: for example, eVTL is best for small datasets 
with missing values.

Conclusion

The task of calculating vocal tract length and scale-invariant 
formant patterns in speech or nonverbal vocalizations can 
be thought of as the general case of vowel normalization 
in phonetics. Because it can be applied to a broad range of 
situations not involving a closed set of expected formant pat-
terns, the general case of VTL and formant-pattern estima-
tion brings its own specific objectives and methodological 
challenges. We have presented a comprehensive theoretical 
framework and toolkit for this work, and here we end with a 
quick summary, concrete guidelines and take-home points, as 
well as the most important gaps to address in future studies.

First of all, we would like to emphasize once again the 
crucial importance of verifying and, if necessary, correcting 
the automatic LPC estimates of formant frequencies. The 
freely available tools for this work include Praat (Boersma, 
2006) and its plugins (Barreda, 2021a), and now also an 
interactive web app, formant_app, designed for quickly 
extracting manually verified average formant frequencies in 
entire vocalizations or annotated regions of interest. This 
step is no longer prohibitively time-consuming, and it can 
have a more dramatic impact on research conclusions than 
any of the subtleties of the following statistical analyses.

Formant analysis on a linear scale using the regression 
method (Reby et  al., 2005; Reby & McComb, 2003) is 
based on the principle that the overall formant spacing in an 
approximately cylindrical tube depends on its length (VTL), 
while the pattern that these formants make (vowel quality) 
depends on the tube’s shape. Formant spacing dF can be 
estimated from formant frequencies in one or more tokens 
using simple linear regression with the estimateVTL func-
tion (resulting in what we call eVTL), and deviations from 
equal spacing normalized by dF are returned by the schwa 
function. This method is robust to missing formant values 
and applicable to vocalizations produced with the vocal tract 
in the configuration of a single, reasonably cylindrical tube, 
from human vowels to elephant rumbles. The lowest one or 
two formants have very little effect on eVTL estimates, so 
it is preferable to leave them blank if these formants are dif-
ficult to measure accurately (e.g., if LPC locks to harmonics 

in high-pitched calls), instead of analyzing incorrect values 
or dropping the entire vocalization from the analysis.

When seen on a logarithmic scale, formants form specific 
patterns or musical chords, which remain stable in speech 
sounds across speakers, being simply transposed up and 
down the frequency scale depending on the speaker’s VTL. 
The ratios or musical intervals between formants therefore 
constitute a scale-invariant representation of formant pattern, 
which we perceive as vowel quality in vowel-like sounds, 
while the mean log-formant gives a measure of overall scale. 
A more powerful statistical approach to this analysis is to 
estimate how far the ‘chords’ of each speaker are transposed 
relative to the average speaker in the sample using mixed 
models explained in the main text and in supplementary files 
(model_K1.html, model_K2.html, scenario2.html).

All these methods of VTL estimation produce compa-
rable results when the task is to compare the typical VTL 
of each speaker averaging across the full range of vowels, 
as in Hillenbrand’s dataset. However, they make somewhat 
different predictions regarding the relation between vowel 
and VTL, and in the absence of suitable anatomical data it is 
difficult to validate these algorithms formally or to devise the 
optimal method of estimating speaker-typical, articulation-
adjusted VTL from a single token (intrinsic normalization). 
Crucially, perceptual data indicate that listeners do adjust 
their size judgments depending on the perceived vowel, so 
that speaker-typical VTL estimates obtained with extrinsic 
normalization predict perceptual size ratings more success-
fully than do one-shot VTL estimates obtained with intrinsic 
normalization. Accordingly, if the research question con-
cerns changes in the anatomical or perceived VTL in dif-
ferent conditions (e.g., in agonistic vs. affiliative contexts, 
when the speaker is trying to sound large or small, dominant, 
or submissive, etc.), it is advisable to record phonetically 
identical material in each condition: for example, a range 
of vowels or some standard phrase. Naturally, this is not an 
option when working with human nonverbal vocalizations 
or animal calls, and the development of anatomically and 
perceptually accurate methods for intrinsic normalization is 
an important area for further research.

The task is more straightforward when the formant pat-
tern, rather than VTL, is the main object of interest. All of 
the described methods successfully capture the differences 
between human vowels, and they should be fully applicable 
to the task of describing vowel-like articulation in non-human 
animals of any size. There are only two simple rules to remem-
ber. First, non-normalized frequencies are not meaningful 
measures of the formant pattern when used across a wide range 
of VTLs, so some form of vocal tract normalization is nearly 
always required. Second, it is essential to measure at least one 
or two formants above F1–F2 to enable this normalization.

As a final note, LPC operates under the assumption that 
there are only positive resonances (poles), and VTL estimation 
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with the regression method assumes that the vocal tract forms 
a single tube. It is therefore not applicable to calls produced 
with a more complex shape of the vocal tract – for example, to 
strongly nasalized vocalizations (Reby et al., 2016). However, 
there are two special cases that are amenable to the analysis 
methods presented in this paper. First, purely nasal vocaliza-
tions, such as some elephant rumbles (Beeck et al., 2022), can 
be analyzed under the assumptions of the closed-open tube 
model, where the vocal tract extends from the glottis to the 
nostrils. Second, single-tube (weakly nasalized) closed-mouth 
vocalizations might be analyzed with the closed-closed tube 
model, as shown in Figure 2C. However, extreme caution is 
needed, and we do not recommend comparing closed-mouth 
and/or nasalized vocalizations with non-nasalized calls in the 
context of VTL analysis because of the potential for making 
serious errors. Extending the existing tools for single-tube VTL 
estimation and vowel normalization to more acoustically com-
plex resonators is another important avenue for future research.
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